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Abstract — In this paper we introduce framework for 

implementation of automatically reconfigurable middleware 
layer for the system represented as a network of devices. The 
middleware enables communication between passive 
heterogeneous components of such distributed system by 
introducing dedicated service agents. Service agents establish 
run-time configurable data paths and they enable quality of 
service based reconfiguration and redundancy in data 
transport. The case study is presented to demonstrate 
utilization of quality of service measurements for automatic 
middleware data path reconfiguration. 

Keywords — automatically reconfigurable middleware, 
device network protocol, quality of service. 

I. INTRODUCTION 
N this paper we introduce approach to reconfigurable 
middleware framework implementation for Device 

Network Architecture (DNA). DNA represents idea of 
physical network devices integration under unified 
hierarchy based on service oriented architecture (SOA). 
Device functionalities are implemented in form of group of 
services available on network nodes.  
Advances in embedded hardware, embedded computing 
and diverse network communication implementations 
resulted in a considerable shift in economy of energy 
consumption, cost of system production, device size 
reduction. They also introduced high volume of 
contextually valuable information. Traditional approaches 
of data acquisition, storage and management of data 
transfer, information processing and availability do not 
meet high demand of throughput, resource and processing 
capability imposed by developments. This creates 
opportunity to envision, define and implement new 
strategies taking into account emerging needs. 
In such environment, functional middleware has clearly 
defined role of abstracting out underlying complexity 
introduced by details of device implementation, low level 
resource representation, communication or computational 
pitfalls and concerns, enabling cooperation between 
participants. It should encompass provisioning of functional 
requirements and non-functional ones, from resource 
management to security, availability and service quality. 
Type of infrastructure which needs to be supported is 
represented by spatially distributed, heterogeneous and 
dynamically rearranging network of nodes. They are 

 
Marko Milovanović is a PhD student at the Electronics Department, 
University of Belgrade - School of Electrical Engineering, Serbia 
(e-mail: m.milovanovic@gmail.com). 
Ivan T. Popović and Aleksandar Ž. Rakić are with the University of 
Belgrade - School of Electrical Engineering, Serbia 

required to exchange information in timely manner, taking 
their context into account. This setting makes parameters of 
QoS particularly relevant. Detecting change in 
communication performance, planning and execution of 
reconfiguration assures system reliability and performance. 
In this work, we analyze the integration of data path 
reconfiguration strategy governed by values of selected 
QoS parameters into the DNA framework. 
Reconfiguration of the system, particularly in run-time, is 
thoroughly studied topic [1-4]. Multiple strategies have 
been developed to address reconfiguration issues such as 
potential downtime of the system components during 
reconfiguration, response time increase, data throughput 
capacity decrease and management of reliability and fault 
tolerance. These strategies offer tradeoffs in regard to 
specific parameter values such that one can select one most 
adequate to particular use case. 
Approach of run-time reconfiguration has been considered 
in models from component view point taking into account 
interconnection both statically and dynamically such as 
Service Component Architecture (SCA) [5] and Fractal [6]. 
OSGi [7] platform uses application management resources 
to accomplish this. Supported functionalities include 
component and resource creation, installation, update, 
removal, dependency management and other. This is the 
point at which middleware resides, abstracting out all 
communication and management intrinsic details from 
functional development. It is technologically neutral and 
loosely coupled. It also offers ability of do composition at 
multiple levels of abstraction and promotes service 
discoverability, which might be challenging features in a 
large distributed network of devices. 
Proposed framework aims to address systems which 
encompass components that may be scarce with resources, 
but aim for high availability and interoperability [8]. Data 
transport is passive with regard to service endpoints 
comprising of sensors, actuators or other functional units 
which lowers demand for resources on their end. 
Communication is facilitated through active components 
dedicated to the resources. This yields strict control over 
network traffic volume to be used at the application level, 
offering flexible modes of data, code and configurations 
transport and exchange between devices. Beneficial aspect 
of this approach is that architecture of the underlying 
middleware does not restrict possible style of the concrete 
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implementation or mode of operation, which may have 
arbitrary concrete implementation such as event driven or 
context-based. Active communication component operation 
may be triggered by external events, distributed network of 
nodes may be observed as a state database which can be 
aggregated and filtered, or accommodate any other 
application specific data structure, functionality or type of 
interaction. 
DNA defines facilities for concrete implementation 
inspired by SCA and implementations such as Spring 
framework [9]. It gives platform for management of 
distributed applications. It is agnostic to concrete 
implementation technology as well, representing software 
components as services. Hierarchical component 
composition is also inspired by model used in SCA. 
However, SCA lacks flexibility in terms of service 
management and configuration, especially in run-time. That 
model also fails to recognize service models which perform 
tasks other then functional domain focused ones, such as 
resource access control. Some of the issues were separately 
addressed [10, 11]. Proposed framework distinguishes 
between local and network resource access requests. It also 
supports access control on the end of service endpoints 
implementing write operation, following established good 
practices [12]. 
DNA addresses common middleware design challenges 
including resource, event, context and arbitrary data 
management, service and resource discovery, availability 
and reliability, fault tolerance and incident recovery, 
scalability, run-time reconfigurability, security, abstraction 
from base components and interoperability. Their relevancy 
is outlined in large body of related work. Concepts of cloud 
computing [13], internet of things [14], fog computing [15] 
and related ones, all deal with research of the issues at hand 
[16, 17]. Here we layout building blocks apt for 
employment in those use cases. 
Following section, II, introduces relevant background. In 
section III DNA is presented, followed by reconfigurable 
middleware in the section IV. Section V introduces QoS 
within proposed framework and in VI describes case study 
and an experiment alongside the results. Finally, VII gives 
the conclusion and suggests expected direction of further 
research and development. 

II. RELATED WORK 
Interconnected networks of entities rely on currently 
available technical and technological solutions and adopt 
newly proposed and implemented ones. Ongoing research 
provides some prominent results which help shape future 
steps and focus on emerging ideas. These include low level 
framework implementations as well as high hierarchical 
and architectural approaches. 
Relevant top level design approaches include agent based, 
event based, service oriented, virtualized environment 
based and others. Implementations focus on domain 
specifics, programming abstractions, context utilization and 
try to combine them in order exhibit desired performance. 
Agent based middleware is described as self-adaptive 
system which maintains its state or adapts new one based 
on the input and current context of the its environment [18]. 
Applications are divided into modular units which can be 

distributed through the network. Major benefits from 
approach include fault and failure tolerance, resource 
management in terms of network load and latency control, 
ability to execute encapsulated processes and follow 
protocols, good overall availability and reliability and 
capacity to adapt to possibly resource restricted network 
entities [19, 20]. 
In practice, implementations often fail to support 
heterogeneous infrastructures. As agents consider 
functional requirements as primary goals, aspects such as 
security and privacy are not well supported. Also, real-time 
policies are not strongly guarantied. Usual weakens of the 
agent based systems is pure code management capacity due 
to unreliable messaging and unpredictable autonomous 
behavior in run-time. 
Event based approach considers system components to be 
participants of interactions [21]. Events are predefined and 
structured units of communications protocol. They are 
generated by event producers, routed through the network 
of addressable entities and delivered to consumers. 
Producers are related to the consumers by means of 
subscriptions [22]. Subscribers are granted access to the 
streams of events they signed up for. Such approach has 
potential for implementation of security policies, gives 
foundation for high reliability and availability. It also has 
capacity to deliver real-time performance, without 
imposing scale restrictions. Decoupling of interaction 
participants makes it ideal for environments with expected 
high rate of failures and dynamic reconfiguration of the 
network topology and volatile node presence. 
Although this approach solves an amount of the problems 
distributed systems are faced with, it usually offers limited 
support for interoperability and does not adapt to arbitrary 
underlying components. Implementations following this 
approach often do not operate as autonomous systems nor 
they support context awareness. 
Service oriented middleware approach define system 
components as services [23]. This is most common industry 
approach as it offers many benefits. It is not related to 
particular technology which makes it highly interoperable 
and reusable on multiple levels [24]. Loose coupling 
between system nodes helps deal with failures and ensures 
reliability in adverse conditions. By means of composition 
it gives tools to implement arbitrary functionality, process 
or paradigm [25]. 
Some deficiencies of service oriented approach include 
pure code management, programming abstractions and lack 
support for heterogeneous systems. Other aspects such as 
arbitrary scaling and autonomous operation are active field 
of study. One important deficiency of this approach is 
available support for security and privacy, which is usually 
limited to basic authentication, without support for fine-
grained access rules [26]. 
Virtualized environments provide encapsulated execution 
context for application within the system [27, 28]. It 
abstracts away details of the underlying infrastructure 
offering high level programming interfaces without 
sacrificing transparency in large heterogeneous systems. 
They can be implemented to operate as a low-level system 
software or as a layer on top of operating system already 
present at the system [29]. Implementation is selected such 
that provides enhancements of characteristics of executing 
environment by providing virtualized resources such as 



 

available processing units count, number of task execution 
threads or processes, virtualized memory and other, which 
can be shared across instances of tasks or system entities. 
Practical implementation of virtualized environments 
usually suffers the most in case of resource constrained 
devices and hardware components. Final implementations 
usually need to account for diversity and use cases which 
impose generality in approach of the design and 
development. Another related issue is undermining 
performance for portability. This and other issues are under 
intensive research. 
There are many other aspects of approaches to 
implementations such as support for novel networking 
protocols, semantics and ontologies, machine learning 
techniques and more, but they are out of the scope of this 
paper. 

III. DEVICE NETWORK ARCHITECTURE 
DNA defines hierarchical model of integration for 
functionalities in network architecture, according to SOA 
concepts, but it borrows some of the concepts from other 
approaches listed previously in the paper such as agent 
based one. Emphasis is placed on reconfigurability of the 
components and their composition during run-time of the 
system. Particular functionalities are defined in form of 
resource collections at point of physical nodes. Individual 
resource is represented by independently configurable 
group of services. Local Resource Management (LRM) 
layer exercises access to resources and their respective 
configurations. This layer governs resources addressing and 
dissociates it from issues of communication at the physical 
layer. It acts as an interface between managed resources and 
the systems that exchange information with them. 
Fig. 1 illustrates integration of group of devices at 
independent network nodes according to DNA concepts. 

 
Fig. 1. Service architecture: Resource manager (RM) and 
Physical nodes (PN) interconnection using configuration 

and data paths. 

Resource Manager performs system level integration of the 
resources and their interconnections via middleware 
configuration. Physical device consists of single local 
resource manager which acts as an interface to components, 
resources and their respective configurations. It manages all 
communication within the service, among components and 
resources, as well as outside service network requests. This 
gives support for composition of the entities comprising of 
physical nodes. 

Three internal layers of architecture are defined by the role 
of components in system integration. LRM components 
support connectivity among devices and also define a model 
to address individual system resources. Particular 
functionalities of individual devices are encapsulated 
within passive layer of system resources. Service Agents 
(SA) collections define active layer. They are only active 
components of the system which can initiate data transfer. 
LRM components collection defines third connectivity 
layer. LRM communication is performed as defined by 
Device network protocol (DNP). 

 
Fig. 2. Logical-layer view of DNA. 

Fig. 2 shows logical organization of the layers of DNA. By 
abstracting out physical aspect of communication and 
system configuration, simplified model of resource 
integration and their respective interconnections according 
to DNA may be represented as in Fig. 3. There is a 
distinction between passive system resources (e.g. service 
groups), active system components (e.g. SAs) which 
embody middleware and data paths defined within active 
components configurations. 

 
Fig. 3. Service instance hierarchy: Local manager governs 

access to available components and resources. 
All communication is performed using DNP. It is stateless 
and does not employ handshake. It supports arbitrary packet 
sizes and has mandatory fields including designated status 
flags, which in turn resolve conditions for presence of 
optional fields.  



 

All relevant and accessible aspects of a node, exposed 
through accessible endpoints, can be monitored and 
managed, assuring performance maintenance and QoS. 
Data and configuration exchange capability ensures 
management flexibility for resources and services. 

IV. RECONFIGURABLE MIDDLEWARE 
Middleware is defined in form of a set of independent 
components which are configured to perform data transport 
over data paths using a pair of read and write service 
endpoints. Implementation of the concrete data exchange 
format and protocol is independent of underlying transport 
or application level protocol. Encapsulation is achieved 
using unified entities capable of communication, 
represented as SA. Service agents manage information data 
paths (IDP) and configuration data paths (CDP) used to 
exchange information and configure services, respectively. 
Messages are exchange and persisted in regard to respective 
service policies on participating nodes.  
Middleware runs as an active part of the system 
architecture, among passive data providers and consumers. 
It consists of a service, which acts as a main architectural 
unit, which governs SAs, representing connections to 
accompanying resources. It may be a representation of a 
physical device or implementation of an arbitrary function 
identified by unique Service ID assigned to it on creation. 
Endpoints of an instance of a service must satisfy 
specification which consists of read and write endpoints for 
both data and configuration paths. Context of the individual 
node is preserved locally and can be managed using 
configuration path calls.  
Once a service is instantiated it gives access to available 
components and resources configuration endpoints, if 
initialization is not required, otherwise it waits for 
initialization prior to enabling configuration access. 
Any resource may be local, meaning that they have 
restricted access available only within the component, or 
they may be accessible through network requests. Access 
control is implemented by Local Resource Manager. It can 
allow or deny access to the resource if it comes from the 
network. At the service end, configuration of the IDP and 
CDP contains information about currently active path. 
Service allows single instance of data path pointing to a 
write endpoint, both information and configuration, to be 
active at any given moment. Granular access control based 
on arbitrary rules should be implemented at the application 
level and it is out of the scope of this paper.  
Middleware handles IDPs and CDPs on all hierarchical 
levels of the system. Paths are defined via source and 
destination specifications. It may use local or network 
endpoints. Resource requests triggered by service calls 
activate SA engagement. Transport layer is encapsulated 
this way within configurable middleware entities. This 
yields resource implementation decoupling from data 
exchange protocol and enables context in which resources 
act as passive elements. Resource callbacks are reachable 
from LRM context. 
Resources themselves define and implement message 
persistence policies, which can be accessed through 
resource managers. Policies may be implemented on an 

arbitrary level of the hierarchy and managed by service 
agents. 
Described middleware supports flexible hierarchical 
organization of isolated system or arbitrary interconnected 
arrangements of systems. Ability to support arbitrary 
arrangements also helps enable distributed architectures. 
This allows for system scaling to accommodate application 
requirements, while components themselves keep small 
footprint in terms of individual network node resource 
requirements. 

V. QUALITY OF SERVICE 
QoS refers to wide variety of non-functional descriptors and 
requirements of the system [30]. This topic was researched 
extensively already and the research resulted in variety of 
implementations in related fields such as cloud computing 
[31]. It attempts to estimate utilization and manage 
available resources to the extent of quality parameters 
requirements fulfilment. Ultimately, reliability of the 
service is reflected in this point as this is the feedback loop 
which needs to unambiguously determine and communicate 
service status. Real-time applications are example use case 
where QoS is essential [32]. 
Initial step is to identify relevant parameters to be used in 
quality evaluation process. Those may include 
performance, reliability of the system, safety, fault 
tolerance, etc. When networking is considered under QoS, 
measures of request to response time delays, line noise, 
jitter, available bandwidth and packet loss are indicative of 
achievable quality of transmission and can be used to 
determine set of preferred or threshold values [33]. To 
achieve assumed values, system must adapt to the changes 
of operating and other conditions of the running 
environment. Proposed framework considers service 
response times and available data transport bandwidth as 
relevant QoS metrics. 
Framework assumes time tracking support in form of 
timestamps embedded into DNP packets. It can be either 
universal or local system time, accessible through read and 
write service endpoints encapsulated into time service. 
Using this service, SA can calculate QoS related relevant 
time intervals. These include both read and write service 
endpoints calls, spanning from the moment request got 
dispatched until respective response is received and interval 
spanning from read request dispatch through response 
received from respective write request, for a configured 
data path. 
QoS Service is implemented according to service 
specification, using read and write endpoints to form 
dedicated IDPs. Read and write events are managed by 
assigned SA nodes. Resource manager is configured to use 
single or multiple instances of QoS. Using assigned SA, it 
submits timing information from the data packet headers 
only. SA submits intervals data to QoS service using its 
service endpoints. For each pair of the service instances 
multiple SAs can be configured simultaneously in parallel, 
each defining single data path. All parallel paths perform 
reading operations on every read cycle and obtain data the 
for write part of the cycle, if any. Write part of the cycle is 
also performed simultaneously by all defined data paths and 



 

target service commits values from active ones. Recorded 
timing and throughput values from all data paths, regardless 
of whether they are currently active one, are then sent to 
QoS for processing and ranking. This information is used to 
reconfigure active paths back at the monitored service. 
QoS measurement is implemented at SA for each individual 
transport over particular IDP. Recorded QoS data 
encompasses read and write service calls request-to-
response times, data transport time over IDP and volume of 
data transport. Data acquired by SA is sent to QoS. It then 
aggregates and processes this data and produces QoS 
parameter for particular IDP. Based on produced parameter, 
algorithm for IDP reconfiguration selects optimal path. This 
information may be used for IDP reconfiguration, both SA 
IDPs and service endpoint IDPs. 

VI. MIDDLEWARE RECONFIGURATION CASE STUDY 
Case study shows feasibility of reconfigurable middleware 
implementation within framework defined by DNA. Basic 
setup includes Resource provider, Resource consumer, 
Service Agents assigned to manage data exchange, 
respective configured data paths and Quality of Service 
endpoints used to manage defined IDPs. 
Reconfiguration capability is tested using two SA nodes, 
with two IDPs each. IDPs are represented by pairs of read 
and write paths. Two functional services, Resource provider 
and Resource consumer, are deployed, as well as two SAs 
(SA1 and SA2). Two SAs define alternative paths which 
can be managed by QoS. Once the SA finishes data 
transport over particular data path, it sends measured QoS 
designated values to QoS service. Experiment components 
layout and connections setup diagram is shown on Fig. 4. 

 
Fig. 4. Experiment setup. 

QoS service contains IDP management which implements 
algorithm for data path selection. In this case, algorithm 
output selects active data path of the Resource consumer 
using its CDP over appropriate configuration interface. 
Active IDP is selected by means of configuration of access 
permissions at particular physical network node (PN). 
Measurements are submitted to QoS write endpoint, 
updating on each data transport. 
QoS parameter at Fig. 5. is represented by normalized 
message transfer time (MTT) over particular IDP. 

Normalization iz performed by predefined maximum MTT. 
In effect, algorithm calcualtes mean value of this parameter 
in a given time frame defined by measurement intervals, for 
multiple parallel IDPs to determine which one is optimal. 
Once the active path degrades Resource consumer CDP 
endpoint is invoked in order to alter resource configuration. 
Initial data path setup asserts active path operated by SA2. 
This data path response time is degraded gradually over 
time. Alternative data path operated by SA1 is maintained 
at constant response time. Data throughput is maintained at 
constant value. Vertical line on graph designates time 
moment of the switch of active data path, which occures at 
31 seconds from the start of measurement session. Prior to 
the switch, SA2 has active data path and after the switch  
SA1 path is selected.  

 
Fig. 5. QoS parameter based active IDP selection. 

Implemented algoritam allows for memory of the previous 
states to be used in the decision making process. This results 
in a degree of tolerance to incidental unusually long 
response times for individual or small number of sequential 
requests, without performing the switch of active data path. 
If the response times of the active data path degrade over 
interval of time enough, better performing data path will be 
selected as active. 
This test case demonstrates DNA support for definig 
redundant data paths. They are important for assuring QoS  
requirements. QoS parameter measurements are localized 
within middleware components as well. Subsequent 
processing of measured data is integrated into architecture 
as an independent resource and finally, resource and IDP 
reconfigurability is excercised using CDPs. 
Provider and consumer components are accessed using 
unified protocol. 
System shows flexibility of data path reconfiguration. This 
elevates both availability and reliability of the implemented 
solution. Locally, nodes store measurement values and 
messages can be recreated in case of transmission failure. 
Respective nodes which act as producers or consumers can 
be deployed in arbitrary large quantities. Same holds true 
for IDPs and CDPs which serve them. 



 

Nodes can be distributed across arbitrary locations, as long 
as underlying networking protocol can uniquely identify 
entities participating in the interaction. Context is preserved 
by managing SAs which hold information about nodes 
configuration and interaction. 

VII. CONCLUSION 
Middleware and framework proposed in this paper 
successfully demonstrate capability of run time data path 
reconfiguration in DNA based network of devices. Service 
agents as unified middleware components encapsulate data 
transport functionality across defined DNA connectivity 
layer. This successfully separates mechanism and format of 
communication from concrete implementation of the device 
itself. Idea of middleware components reconfigurability 
offers possibility for redundant data paths, data transport 
optimization and a way to intervene with already 
established and setup systems in run-time by integrating 
devices and possibly new functionalities. 
Focus of the future work will be placed to areas which 
include issues of reliability and robustness of the 
middleware implementation while using underlying 
network protocols for particular application on top of 
Internet Protocols, analysis of fault tolerance capability of 
the middleware as well as capacity to deliver code and 
configuration under the assumptions of QoS. 

APPENDIX 
Implementation of the framework used for experiment in 
this paper, with accompanying utilities, is available at: 
https://github.com/DNAIoT/prototype. 
DNA components implementation targeted at embedded 
devices under active development is available at: 
https://github.com/DNAIoT/components. 
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