

978-1-5090-4086-5/16/$31.00 ©2016 IEEE

Abstract — In this paper we introduce framework for

implementation of automatically reconfigurable middleware
layer for the system represented as a network of devices. The
middleware enables communication between passive
heterogeneous components of such distributed system by
introducing dedicated service agents. Service agents establish
run-time configurable data paths and they enable quality of
service based reconfiguration and redundancy in data
transport. The case study is presented to demonstrate
utilization of quality of service measurements for automatic
middleware data path reconfiguration.

Keywords — automatically reconfigurable middleware,
device network protocol, quality of service.

I. INTRODUCTION
N this paper we introduce approach to reconfigurable
middleware framework implementation for Device

Network Architecture (DNA). DNA represents idea of
physical network devices integration under unified
hierarchy based on service oriented architecture (SOA).
Device functionalities are implemented in form of group of
services available on network nodes.
Advances in embedded hardware, embedded computing
and diverse network communication implementations
resulted in a considerable shift in economy of energy
consumption, cost of system production, device size
reduction. They also introduced high volume of
contextually valuable information. Traditional approaches
of data acquisition, storage and management of data
transfer, information processing and availability do not
meet high demand of throughput, resource and processing
capability imposed by developments. This creates
opportunity to envision, define and implement new
strategies taking into account emerging needs.
In such environment, functional middleware has clearly
defined role of abstracting out underlying complexity
introduced by details of device implementation, low level
resource representation, communication or computational
pitfalls and concerns, enabling cooperation between
participants. It should encompass provisioning of functional
requirements and non-functional ones, from resource
management to security, availability and service quality.
Type of infrastructure which needs to be supported is
represented by spatially distributed, heterogeneous and
dynamically rearranging network of nodes. They are

Marko Milovanović is a PhD student at the Electronics Department,
University of Belgrade - School of Electrical Engineering, Serbia
(e-mail: m.milovanovic@gmail.com).
Ivan T. Popović and Aleksandar Ž. Rakić are with the University of
Belgrade - School of Electrical Engineering, Serbia

required to exchange information in timely manner, taking
their context into account. This setting makes parameters of
QoS particularly relevant. Detecting change in
communication performance, planning and execution of
reconfiguration assures system reliability and performance.
In this work, we analyze the integration of data path
reconfiguration strategy governed by values of selected
QoS parameters into the DNA framework.
Reconfiguration of the system, particularly in run-time, is
thoroughly studied topic [1-4]. Multiple strategies have
been developed to address reconfiguration issues such as
potential downtime of the system components during
reconfiguration, response time increase, data throughput
capacity decrease and management of reliability and fault
tolerance. These strategies offer tradeoffs in regard to
specific parameter values such that one can select one most
adequate to particular use case.
Approach of run-time reconfiguration has been considered
in models from component view point taking into account
interconnection both statically and dynamically such as
Service Component Architecture (SCA) [5] and Fractal [6].
OSGi [7] platform uses application management resources
to accomplish this. Supported functionalities include
component and resource creation, installation, update,
removal, dependency management and other. This is the
point at which middleware resides, abstracting out all
communication and management intrinsic details from
functional development. It is technologically neutral and
loosely coupled. It also offers ability of do composition at
multiple levels of abstraction and promotes service
discoverability, which might be challenging features in a
large distributed network of devices.
Proposed framework aims to address systems which
encompass components that may be scarce with resources,
but aim for high availability and interoperability [8]. Data
transport is passive with regard to service endpoints
comprising of sensors, actuators or other functional units
which lowers demand for resources on their end.
Communication is facilitated through active components
dedicated to the resources. This yields strict control over
network traffic volume to be used at the application level,
offering flexible modes of data, code and configurations
transport and exchange between devices. Beneficial aspect
of this approach is that architecture of the underlying
middleware does not restrict possible style of the concrete

(e-mail: popovici@el.etf.rs, rakic@etf.rs).

Run-Time Reconfigurable Middleware in
Device Network Architecture

Marko Milovanović, Ivan T. Popović, and Aleksandar Ž. Rakić, Member, IEEE

I

implementation or mode of operation, which may have
arbitrary concrete implementation such as event driven or
context-based. Active communication component operation
may be triggered by external events, distributed network of
nodes may be observed as a state database which can be
aggregated and filtered, or accommodate any other
application specific data structure, functionality or type of
interaction.
DNA defines facilities for concrete implementation
inspired by SCA and implementations such as Spring
framework [9]. It gives platform for management of
distributed applications. It is agnostic to concrete
implementation technology as well, representing software
components as services. Hierarchical component
composition is also inspired by model used in SCA.
However, SCA lacks flexibility in terms of service
management and configuration, especially in run-time. That
model also fails to recognize service models which perform
tasks other then functional domain focused ones, such as
resource access control. Some of the issues were separately
addressed [10, 11]. Proposed framework distinguishes
between local and network resource access requests. It also
supports access control on the end of service endpoints
implementing write operation, following established good
practices [12].
DNA addresses common middleware design challenges
including resource, event, context and arbitrary data
management, service and resource discovery, availability
and reliability, fault tolerance and incident recovery,
scalability, run-time reconfigurability, security, abstraction
from base components and interoperability. Their relevancy
is outlined in large body of related work. Concepts of cloud
computing [13], internet of things [14], fog computing [15]
and related ones, all deal with research of the issues at hand
[16, 17]. Here we layout building blocks apt for
employment in those use cases.
Following section, II, introduces relevant background. In
section III DNA is presented, followed by reconfigurable
middleware in the section IV. Section V introduces QoS
within proposed framework and in VI describes case study
and an experiment alongside the results. Finally, VII gives
the conclusion and suggests expected direction of further
research and development.

II. RELATED WORK
Interconnected networks of entities rely on currently
available technical and technological solutions and adopt
newly proposed and implemented ones. Ongoing research
provides some prominent results which help shape future
steps and focus on emerging ideas. These include low level
framework implementations as well as high hierarchical
and architectural approaches.
Relevant top level design approaches include agent based,
event based, service oriented, virtualized environment
based and others. Implementations focus on domain
specifics, programming abstractions, context utilization and
try to combine them in order exhibit desired performance.
Agent based middleware is described as self-adaptive
system which maintains its state or adapts new one based
on the input and current context of the its environment [18].
Applications are divided into modular units which can be

distributed through the network. Major benefits from
approach include fault and failure tolerance, resource
management in terms of network load and latency control,
ability to execute encapsulated processes and follow
protocols, good overall availability and reliability and
capacity to adapt to possibly resource restricted network
entities [19, 20].
In practice, implementations often fail to support
heterogeneous infrastructures. As agents consider
functional requirements as primary goals, aspects such as
security and privacy are not well supported. Also, real-time
policies are not strongly guarantied. Usual weakens of the
agent based systems is pure code management capacity due
to unreliable messaging and unpredictable autonomous
behavior in run-time.
Event based approach considers system components to be
participants of interactions [21]. Events are predefined and
structured units of communications protocol. They are
generated by event producers, routed through the network
of addressable entities and delivered to consumers.
Producers are related to the consumers by means of
subscriptions [22]. Subscribers are granted access to the
streams of events they signed up for. Such approach has
potential for implementation of security policies, gives
foundation for high reliability and availability. It also has
capacity to deliver real-time performance, without
imposing scale restrictions. Decoupling of interaction
participants makes it ideal for environments with expected
high rate of failures and dynamic reconfiguration of the
network topology and volatile node presence.
Although this approach solves an amount of the problems
distributed systems are faced with, it usually offers limited
support for interoperability and does not adapt to arbitrary
underlying components. Implementations following this
approach often do not operate as autonomous systems nor
they support context awareness.
Service oriented middleware approach define system
components as services [23]. This is most common industry
approach as it offers many benefits. It is not related to
particular technology which makes it highly interoperable
and reusable on multiple levels [24]. Loose coupling
between system nodes helps deal with failures and ensures
reliability in adverse conditions. By means of composition
it gives tools to implement arbitrary functionality, process
or paradigm [25].
Some deficiencies of service oriented approach include
pure code management, programming abstractions and lack
support for heterogeneous systems. Other aspects such as
arbitrary scaling and autonomous operation are active field
of study. One important deficiency of this approach is
available support for security and privacy, which is usually
limited to basic authentication, without support for fine-
grained access rules [26].
Virtualized environments provide encapsulated execution
context for application within the system [27, 28]. It
abstracts away details of the underlying infrastructure
offering high level programming interfaces without
sacrificing transparency in large heterogeneous systems.
They can be implemented to operate as a low-level system
software or as a layer on top of operating system already
present at the system [29]. Implementation is selected such
that provides enhancements of characteristics of executing
environment by providing virtualized resources such as

available processing units count, number of task execution
threads or processes, virtualized memory and other, which
can be shared across instances of tasks or system entities.
Practical implementation of virtualized environments
usually suffers the most in case of resource constrained
devices and hardware components. Final implementations
usually need to account for diversity and use cases which
impose generality in approach of the design and
development. Another related issue is undermining
performance for portability. This and other issues are under
intensive research.
There are many other aspects of approaches to
implementations such as support for novel networking
protocols, semantics and ontologies, machine learning
techniques and more, but they are out of the scope of this
paper.

III. DEVICE NETWORK ARCHITECTURE
DNA defines hierarchical model of integration for
functionalities in network architecture, according to SOA
concepts, but it borrows some of the concepts from other
approaches listed previously in the paper such as agent
based one. Emphasis is placed on reconfigurability of the
components and their composition during run-time of the
system. Particular functionalities are defined in form of
resource collections at point of physical nodes. Individual
resource is represented by independently configurable
group of services. Local Resource Management (LRM)
layer exercises access to resources and their respective
configurations. This layer governs resources addressing and
dissociates it from issues of communication at the physical
layer. It acts as an interface between managed resources and
the systems that exchange information with them.
Fig. 1 illustrates integration of group of devices at
independent network nodes according to DNA concepts.

Fig. 1. Service architecture: Resource manager (RM) and
Physical nodes (PN) interconnection using configuration

and data paths.

Resource Manager performs system level integration of the
resources and their interconnections via middleware
configuration. Physical device consists of single local
resource manager which acts as an interface to components,
resources and their respective configurations. It manages all
communication within the service, among components and
resources, as well as outside service network requests. This
gives support for composition of the entities comprising of
physical nodes.

Three internal layers of architecture are defined by the role
of components in system integration. LRM components
support connectivity among devices and also define a model
to address individual system resources. Particular
functionalities of individual devices are encapsulated
within passive layer of system resources. Service Agents
(SA) collections define active layer. They are only active
components of the system which can initiate data transfer.
LRM components collection defines third connectivity
layer. LRM communication is performed as defined by
Device network protocol (DNP).

Fig. 2. Logical-layer view of DNA.

Fig. 2 shows logical organization of the layers of DNA. By
abstracting out physical aspect of communication and
system configuration, simplified model of resource
integration and their respective interconnections according
to DNA may be represented as in Fig. 3. There is a
distinction between passive system resources (e.g. service
groups), active system components (e.g. SAs) which
embody middleware and data paths defined within active
components configurations.

Fig. 3. Service instance hierarchy: Local manager governs

access to available components and resources.
All communication is performed using DNP. It is stateless
and does not employ handshake. It supports arbitrary packet
sizes and has mandatory fields including designated status
flags, which in turn resolve conditions for presence of
optional fields.

All relevant and accessible aspects of a node, exposed
through accessible endpoints, can be monitored and
managed, assuring performance maintenance and QoS.
Data and configuration exchange capability ensures
management flexibility for resources and services.

IV. RECONFIGURABLE MIDDLEWARE
Middleware is defined in form of a set of independent
components which are configured to perform data transport
over data paths using a pair of read and write service
endpoints. Implementation of the concrete data exchange
format and protocol is independent of underlying transport
or application level protocol. Encapsulation is achieved
using unified entities capable of communication,
represented as SA. Service agents manage information data
paths (IDP) and configuration data paths (CDP) used to
exchange information and configure services, respectively.
Messages are exchange and persisted in regard to respective
service policies on participating nodes.
Middleware runs as an active part of the system
architecture, among passive data providers and consumers.
It consists of a service, which acts as a main architectural
unit, which governs SAs, representing connections to
accompanying resources. It may be a representation of a
physical device or implementation of an arbitrary function
identified by unique Service ID assigned to it on creation.
Endpoints of an instance of a service must satisfy
specification which consists of read and write endpoints for
both data and configuration paths. Context of the individual
node is preserved locally and can be managed using
configuration path calls.
Once a service is instantiated it gives access to available
components and resources configuration endpoints, if
initialization is not required, otherwise it waits for
initialization prior to enabling configuration access.
Any resource may be local, meaning that they have
restricted access available only within the component, or
they may be accessible through network requests. Access
control is implemented by Local Resource Manager. It can
allow or deny access to the resource if it comes from the
network. At the service end, configuration of the IDP and
CDP contains information about currently active path.
Service allows single instance of data path pointing to a
write endpoint, both information and configuration, to be
active at any given moment. Granular access control based
on arbitrary rules should be implemented at the application
level and it is out of the scope of this paper.
Middleware handles IDPs and CDPs on all hierarchical
levels of the system. Paths are defined via source and
destination specifications. It may use local or network
endpoints. Resource requests triggered by service calls
activate SA engagement. Transport layer is encapsulated
this way within configurable middleware entities. This
yields resource implementation decoupling from data
exchange protocol and enables context in which resources
act as passive elements. Resource callbacks are reachable
from LRM context.
Resources themselves define and implement message
persistence policies, which can be accessed through
resource managers. Policies may be implemented on an

arbitrary level of the hierarchy and managed by service
agents.
Described middleware supports flexible hierarchical
organization of isolated system or arbitrary interconnected
arrangements of systems. Ability to support arbitrary
arrangements also helps enable distributed architectures.
This allows for system scaling to accommodate application
requirements, while components themselves keep small
footprint in terms of individual network node resource
requirements.

V. QUALITY OF SERVICE
QoS refers to wide variety of non-functional descriptors and
requirements of the system [30]. This topic was researched
extensively already and the research resulted in variety of
implementations in related fields such as cloud computing
[31]. It attempts to estimate utilization and manage
available resources to the extent of quality parameters
requirements fulfilment. Ultimately, reliability of the
service is reflected in this point as this is the feedback loop
which needs to unambiguously determine and communicate
service status. Real-time applications are example use case
where QoS is essential [32].
Initial step is to identify relevant parameters to be used in
quality evaluation process. Those may include
performance, reliability of the system, safety, fault
tolerance, etc. When networking is considered under QoS,
measures of request to response time delays, line noise,
jitter, available bandwidth and packet loss are indicative of
achievable quality of transmission and can be used to
determine set of preferred or threshold values [33]. To
achieve assumed values, system must adapt to the changes
of operating and other conditions of the running
environment. Proposed framework considers service
response times and available data transport bandwidth as
relevant QoS metrics.
Framework assumes time tracking support in form of
timestamps embedded into DNP packets. It can be either
universal or local system time, accessible through read and
write service endpoints encapsulated into time service.
Using this service, SA can calculate QoS related relevant
time intervals. These include both read and write service
endpoints calls, spanning from the moment request got
dispatched until respective response is received and interval
spanning from read request dispatch through response
received from respective write request, for a configured
data path.
QoS Service is implemented according to service
specification, using read and write endpoints to form
dedicated IDPs. Read and write events are managed by
assigned SA nodes. Resource manager is configured to use
single or multiple instances of QoS. Using assigned SA, it
submits timing information from the data packet headers
only. SA submits intervals data to QoS service using its
service endpoints. For each pair of the service instances
multiple SAs can be configured simultaneously in parallel,
each defining single data path. All parallel paths perform
reading operations on every read cycle and obtain data the
for write part of the cycle, if any. Write part of the cycle is
also performed simultaneously by all defined data paths and

target service commits values from active ones. Recorded
timing and throughput values from all data paths, regardless
of whether they are currently active one, are then sent to
QoS for processing and ranking. This information is used to
reconfigure active paths back at the monitored service.
QoS measurement is implemented at SA for each individual
transport over particular IDP. Recorded QoS data
encompasses read and write service calls request-to-
response times, data transport time over IDP and volume of
data transport. Data acquired by SA is sent to QoS. It then
aggregates and processes this data and produces QoS
parameter for particular IDP. Based on produced parameter,
algorithm for IDP reconfiguration selects optimal path. This
information may be used for IDP reconfiguration, both SA
IDPs and service endpoint IDPs.

VI. MIDDLEWARE RECONFIGURATION CASE STUDY
Case study shows feasibility of reconfigurable middleware
implementation within framework defined by DNA. Basic
setup includes Resource provider, Resource consumer,
Service Agents assigned to manage data exchange,
respective configured data paths and Quality of Service
endpoints used to manage defined IDPs.
Reconfiguration capability is tested using two SA nodes,
with two IDPs each. IDPs are represented by pairs of read
and write paths. Two functional services, Resource provider
and Resource consumer, are deployed, as well as two SAs
(SA1 and SA2). Two SAs define alternative paths which
can be managed by QoS. Once the SA finishes data
transport over particular data path, it sends measured QoS
designated values to QoS service. Experiment components
layout and connections setup diagram is shown on Fig. 4.

Fig. 4. Experiment setup.

QoS service contains IDP management which implements
algorithm for data path selection. In this case, algorithm
output selects active data path of the Resource consumer
using its CDP over appropriate configuration interface.
Active IDP is selected by means of configuration of access
permissions at particular physical network node (PN).
Measurements are submitted to QoS write endpoint,
updating on each data transport.
QoS parameter at Fig. 5. is represented by normalized
message transfer time (MTT) over particular IDP.

Normalization iz performed by predefined maximum MTT.
In effect, algorithm calcualtes mean value of this parameter
in a given time frame defined by measurement intervals, for
multiple parallel IDPs to determine which one is optimal.
Once the active path degrades Resource consumer CDP
endpoint is invoked in order to alter resource configuration.
Initial data path setup asserts active path operated by SA2.
This data path response time is degraded gradually over
time. Alternative data path operated by SA1 is maintained
at constant response time. Data throughput is maintained at
constant value. Vertical line on graph designates time
moment of the switch of active data path, which occures at
31 seconds from the start of measurement session. Prior to
the switch, SA2 has active data path and after the switch
SA1 path is selected.

Fig. 5. QoS parameter based active IDP selection.

Implemented algoritam allows for memory of the previous
states to be used in the decision making process. This results
in a degree of tolerance to incidental unusually long
response times for individual or small number of sequential
requests, without performing the switch of active data path.
If the response times of the active data path degrade over
interval of time enough, better performing data path will be
selected as active.
This test case demonstrates DNA support for definig
redundant data paths. They are important for assuring QoS
requirements. QoS parameter measurements are localized
within middleware components as well. Subsequent
processing of measured data is integrated into architecture
as an independent resource and finally, resource and IDP
reconfigurability is excercised using CDPs.
Provider and consumer components are accessed using
unified protocol.
System shows flexibility of data path reconfiguration. This
elevates both availability and reliability of the implemented
solution. Locally, nodes store measurement values and
messages can be recreated in case of transmission failure.
Respective nodes which act as producers or consumers can
be deployed in arbitrary large quantities. Same holds true
for IDPs and CDPs which serve them.

Nodes can be distributed across arbitrary locations, as long
as underlying networking protocol can uniquely identify
entities participating in the interaction. Context is preserved
by managing SAs which hold information about nodes
configuration and interaction.

VII. CONCLUSION
Middleware and framework proposed in this paper
successfully demonstrate capability of run time data path
reconfiguration in DNA based network of devices. Service
agents as unified middleware components encapsulate data
transport functionality across defined DNA connectivity
layer. This successfully separates mechanism and format of
communication from concrete implementation of the device
itself. Idea of middleware components reconfigurability
offers possibility for redundant data paths, data transport
optimization and a way to intervene with already
established and setup systems in run-time by integrating
devices and possibly new functionalities.
Focus of the future work will be placed to areas which
include issues of reliability and robustness of the
middleware implementation while using underlying
network protocols for particular application on top of
Internet Protocols, analysis of fault tolerance capability of
the middleware as well as capacity to deliver code and
configuration under the assumptions of QoS.

APPENDIX
Implementation of the framework used for experiment in
this paper, with accompanying utilities, is available at:
https://github.com/DNAIoT/prototype.
DNA components implementation targeted at embedded
devices under active development is available at:
https://github.com/DNAIoT/components.

ACKNOWLEDGMENTS
This work was supported by the Serbian Ministry of
Education, Science and Technological Development under
contract no. TR-32043.

REFERENCES
[1] W. Li, "Evaluating the impacts of dynamic reconfiguration on the

QoS of running systems", Journal of Systems and Software, vol. 84,
no. 12, 2011, pp. 2123-2138.

[2] M. G. Valls, P. B., Val, "Comparative analysis of two different
middleware approaches for reconfiguration of distributed real-time
systems", Journal of Systems Architecture, vol. 60, no. 2, 2014, pp.
221-233.

[3] J. Almeida, M. van Sinderen, et al., "Designing Interaction Systems
for Distributed Applications", IEEE Distributed Systems Online, vol.
6, no. 3, 2005, pp. 1-1.

[4] A. Agirre, J. Parra, et al., “QoS management for dependable sensory
environments”, Multimedia Tools and Applications, 2015, pp. 1-23.

[5] M. Beisiegel, H. Blohm, et al., “Service component architecture:
Building systems using a Service Oriented Architecture”, [online],
Whitepaper, 2005, pp. 1-31.

[6] E. Bruneton, T. Coupaye, et al., "The FRACTAL component model
and its support in Java", Softw: Pract. Exper., vol. 36, no. 11-12,
2006, pp. 1257-1284.

[7] “OSGi Service Platform Release 6.0", (2014), OSGi Alliance,
[Online],
https://osgi.org/download/osgi.enterprise-6.0.0-earlydraft2.pdf.

[8] D. Ingram, “Reconfigurable middleware for high availability sensor
systems”, In Proceedings of the Third ACM International
Conference on Distributed Event-Based Systems, 2009, p. 20.

[9] R. Johnson et. al., (2016), “Spring Framework Reference
Documentation”, Whitepaper, [online], ,

http://docs.spring.io/spring/docs/current/spring-framework-
reference/pdf/spring-framework-reference.pdf,

[10] J. Chen, R. Childress, et al., “A service management architecture
component model”, In Proceedings of the 7th International
Conference on Network and Services Management, International
Federation for Information Processing, 2011, pp. 316-319.

[11] Buyya, R., Abramson, D., at al., “Nimrod/G: An architecture for a
resource management and scheduling system in a global
computational grid”, In High Performance Computing in the Asia-
Pacific Region, Proceedings, The Fourth International
Conference/Exhibitiom, Vol. 1, 2000, pp. 283-289, IEEE.

[12] H. A. Duran-Limon, G. S. Blair, et al., “Adaptive resource
management in middleware: A survey”, IEEE Distributed Systems
[Online], 2004,
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1323036

[13] P. Mell, T. Grance, “The NIST definition of cloud computing”,
National Institute of Standards and Technology, 2009, 53(6), p.50.

[14] K. Ashton, “That ‘internet of things’ thing”. RFiD Journal, 22(7),
2009., pp.97-114.

[15] F. Bonomi, R. Milito, J. Zhu, S. Addepalli. "Fog computing and its
role in the internet of things." In Proceedings of the first edition of
the MCC workshop on Mobile cloud computing, ACM, 2012, pp. 13-
16.

[16] M.A. Razzaque, M. Milojevic-Jevric, A. Palade, S. Clarke,
“Middleware for internet of things: a survey”, IEEE Internet of
Things Journal, 3(1), 2016., pp.70-95.

[17] A. Munir, P. Kansakar, S.U. Khan, “IFCIoT: Integrated Fog Cloud
IoT Architectural Paradigm for Future Internet of Things”, arXiv
preprint arXiv:1701.08474, 2017.

[18] J. Ceclio and P. Furtado, “Existing middleware solutions for wireless
sensor networks,” in Proc. Wireless Sens. Heterogen. Netw. Syst.,
2014, pp. 39–59.

[19] F. Aiello, G. Fortino, and A. Guerrieri, “Using mobile agents as
enabling technology for wireless sensor networks,” in Proc.
SENSORCOMM, Aug. 2008.

[20] T. Liu and M. Martonosi, “Impala: A middleware system for
managing autonomic, parallel sensor systems,” ACM SIGPLAN
Notices, vol. 38, no. 10, pp. 107–118, 2003.

[21] R. Meier and V. Cahill, “Steam: Event-based middleware for
wireless ad hoc networks,” in Proc. 22nd Int. Conf. Distrib. Comput.
Syst.Workshops, 2002, pp. 639–644.

[22] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surveys, vol. 35,
no. 2, pp. 114–131, 2003.

[23] M. Papazoglou, “Service-oriented computing: Concepts,
characteristics and directions,” in Proc. 4th Int. Conf. Web Inf. Syst.
Eng. (WISE’03), Dec. 2003 pp. 3–12.

[24] C. L. Fok, G. C. Roman, and C. Lu, “Servilla: A flexible service
provisioning middleware for heterogeneous sensor networks,” Sci.
Comput. Programm., vol. 77, no. 6, pp. 663–684, 2012.

[25] N. Reijers, K.-J. Lin, Y.-C.Wang, C.-S. Shih, and J. Y. Hsu, “Design
of an intelligent middleware for flexible sensor configuration in
M2M systems,” in Proc. SENSORNETS, 2013, pp. 41–46.

[26] S. Satyadevan, B. Kalarickal, and M. Jinesh, “Security, trust and
implementation limitations of prominent IoT platforms,” in Proc.
Front. Intell. Comput. Theory Appl. (FICTA’14), 2015, vol. 328, pp.
85–95.

[27] N. Mohamed and J. Al-Jaroodi, “A survey on service-oriented
middleware for wireless sensor networks,” Serv. Oriented Comput.
Appl., vol. 5, no. 2, pp. 71–85, 2011.

[28] J. Koshy and R. Pandey, “Vm*: Synthesizing scalable runtime
environments for sensor networks,” in Proc. 3rd Int. Conf. Embedded
Netw. Sensor Syst. (Sensys), 2005, pp. 243–254.

[29] P. A. Levis, “Application specific virtual machines: Operating
system support for user-level sensornet programming,” Ph.D.
dissertation, Berkeley, CA, USA, 2005.

[30] C. Gronroos, “Service quality: The six criteria of good perceived
service”, Review of business, 9(3), 1988, p. 10.

[31] G. F. Anastasi, E. Bini, A. Romano, and G. Lipari, “A service-
oriented architecture for QoS configuration and management of
wireless sensor networks,” in Proc. IEEE Conf. Emerging Technol.
Factory Autom. (ETFA), 2010, pp. 1–8.

[32] J. M. Hyman, A. A. Lazar, G. Pacifici, "Real-time scheduling with
quality of service constraints", IEEE Journal on Selected Areas in
Communications, 9(7), 1991., pp.1052-1063.

[33] T. Chauhan, S. Chaudhary, V. Kumar, and M. Bhise, "Service Level
Agreement Parameter Matching in Cloud Computing", World Cong.
ICT, 2011., pp. 564-570.

