Bistabilna kola
 Leč kolo
 Flip-Flop

Standard sequential circuits - SR latch

Standard sequential circuits - SR latch

Standard sequential circuits - SR latch

Standard sequential circuits - SR latch

Standard sequential circuits - D latch

Standard sequential circuits - D latch

Standard sequential circuits - D FF

D	Cp	$\mathrm{Q}[\mathrm{n}+1]$
x	0	$\mathrm{Q}[\mathrm{n}]$
0	$0 \rightarrow 1$	0
1	$0 \rightarrow 1$	1
x	1	$\mathrm{Q}[\mathrm{n}]$

D FF master-slave operation

D FF with /preset and /clear

D FF with /preset=1 and /clear

74HC73

JK flip-flop with reset; negative-edge trigger

74HC73
JK flip-flop with reset; negativeedge trigger

Dual J-K Flip-Flop with Set and Reset

Registers

- n-bit register is a set of $n \mathrm{D}$ flip-flops, one per bit
- Data inputs are $\mathrm{D}_{0}, \mathrm{D}_{1}, \ldots, \mathrm{D}_{n-1}$
- Data outputs are $\mathrm{Q}_{0}, \mathrm{Q}_{1}, \ldots, \mathrm{Q}_{n-1}$
- Common Clock for all flip-flops
- Optional preset or clear

n bit latch

- n-bit latch is a set of n single bit latches, one per bit
- Data inputs are $\mathrm{D}_{0}, \mathrm{D}_{1}, \ldots, \mathrm{D}_{n-1}$
- Data outputs are $\mathrm{Q}_{0}, \mathrm{Q}_{1}, \ldots, \mathrm{Q}_{n-1}$
- Common LE for all latches
- Optional preset or clear

ROM 4×6 bit

Word 0: 010101
Word 1: 011001
Word 2: 100101
Word 3: 101010

Memory Cell: Static RAM (8 transistors)

- 8-transistor cell
- Bit_i is the data bus
-Sj is the word line
- Bus drivers
- Sense Amplifier (inverter with high gain) used for fast switching
- Make sure inverters in cell are weaker than the combination of "write
 buffer" and pass transistor

Memory Cell: Static RAM (6 transistors)

- 6-transistor cell
- Must adjust inverters for input coming through n-type pass gate
- Bus drivers
- Must adjust senseAmp for input coming through n-type pass gate
- Harder to drive 1 than 0 through write buffer (high resistance via ntransistor)
- One side is sending 0 anyway (bit or bit') \rightarrow
written correctly

6-Transistor Memory Array

- 8 words deep RAM, 2 bits wide words
- To write to word j :
- Set $\mathrm{S}_{\mathrm{j}}=1$, all other S lines to 0
- Send data on the global bit $_{0}$, bit $_{0}{ }^{\prime}$, bit $_{1}$, bit $_{1}{ }^{\text {, }}$
- To read word k :
- Set $\mathrm{S}_{\mathrm{k}}=1$, all other S lines to 0
- Sense data on bit ${ }_{0}$ and bit $_{1}$.

Dynamic RAM 4-Transistor Cell

- 4-transistor cell
- Dynamic charge storage must be refreshed
- Dedicated busses for reading and writing

Dynamic RAM 3-Transistor Cell

- 3-transistor cell
- No p-type transistors yield a very compact layout for cell
- No Vdd connection
- Sense Amplifier must be able to quickly detect dropping voltage

Dynamic RAM 1-Transistor Cell

- 1-transistor cell
- Storage capacitor is source of cell transistor
- Special processing steps to make the storage capacitor large
- Charge sharing with bus capacitance

$$
\left(\mathrm{C}_{\mathrm{cell}} \ll \mathrm{C}_{\mathrm{bus}}\right)
$$

- Extra demand on sense amplifier to detect small changes
- Destructive read (must write immediately)

