
Communications:
Interfacing to the PS/2
Mouse



172 Rapid Prototyping of Digital Systems Chapter 11

11 Communications: Interfacing to the PS/2 Mouse

Just like the PS/2 keyboard, the PS/2 mouse uses the PS/2 synchronous bi-
directional serial communication protocol described in section 10.4 and shown
in Figures 10.1 and 10.2. Internally, the mouse contains a ball that rolls two
slotted wheels. The wheels are connected to two optical encoders. The two
encoders sense x and y motion by counting pulses when the wheels move. It
also contains two or three pushbuttons that can be read by the system and a
single-chip microcontroller. The microcontroller in the mouse sends data
packets to the computer reporting movement and button status.
It is necessary for the computer or in this case the FLEX chip to send the mouse
an initialization command to have it start sending mouse data packets. This
makes interfacing to the mouse more difficult than interfacing to the keyboard.
As seen in Table 11.1, the command value needed for initialization after power
up is F4, enable streaming mode.



Interfacing to the PS/2 Mouse Port 173

After streaming mode is enabled, the mouse sends data to the system in three
byte data packets that contain motion and pushbutton status. The format of a
three-byte mouse data packet is seen in Table 11.3.



174 Rapid Prototyping of Digital Systems Chapter 11

11.1 The Mouse UP1core
The UP1core function Mouse is designed to provide a simple interface to the
mouse. This function initializes the mouse and then monitors the mouse data
transmissions. It outputs a mouse cursor address and button status. The internal
operation of the Mouse UP1core is rather complex and the fundamentals are
described in the section that follows. Like the other UP1core functions, it is
written in VHDL and source code is provided.

To interface to the mouse, a clock filter, serial-to-parallel conversion and
parallel-to-serial conversion with two shift registers is required along with a
state machine to control the various modes. See Chapter 10 on the PS/2
keyboard for an example of a clock filter design.

11.2 Mouse Initialization
Two lines are used to interface to the mouse, clock and data. The lines must be
tri-state bi-directional, since at times they are driven by the mouse and at other
times by the FLEX chip. All clock, data, and handshake signals share two tri-
state, bi-directional lines, clock and data. These two lines must be declared bi-
directional when pin assignments are made and they must have tri-state outputs
in the interface. The mouse actually has open collector outputs that can be
simulated by using a tri-state output. The mouse always drives the clock signal
for any serial data exchanges. The FLEX chip can inhibit mouse transmissions
by pulling the clock line Low at any time.
The FLEX chip drives the data line when sending commands to the mouse.
When the mouse sends data to the FLEX chip it drives the data line. The tri-
state bi-directional handshaking is described in more detail in the IBM PS/2
Technical Reference manual. A simpler version with just the basics for
operation with the UP 1 is presented here. Just like the keyboard, the mouse
interface is more reliable if a clock filter is used on the clock line.
At power-up, the mouse runs a self-test and sends out the codes AA and 00.
The clock and data FLEX chip outputs are tri-stated before downloading the
UP 1, so they float High. High turns out to be ready to send for mouse data, so
AA and 00 are sent out prior to downloading and need not be considered in the
interface. This assumes that the mouse is plugged in before applying power to
the UP 1 board and downloading the design.



Interfacing to the PS/2 Mouse Port 175

The default power-up mode is streaming mode disabled. To get the mouse to
start sending 3-byte data packets, the streaming mode must be turned on by
sending the enable streaming mode command, F4, to the mouse from the FLEX
chip. The clock tri-state line is driven Low by the FLEX for at least 60us to
inhibit any data transmissions from the mouse. This is the only case when the
FLEX chip should ever drive the clock line. The data line is then driven Low
by the FLEX chip to signal that the system has a command to send the mouse.

The clock line is driven High for two clocks at 25Mhz and then tri-stated to
simulate an open collector output. This reduces the rise time and reflections on
the mouse cable that might be seen by the fast FLEX chip logic as the clock
line returns to the High state. As an alternative, the mouse clock input to the
FLEX could be briefly disabled while the clock line returns to the High state.
Next the mouse, seeing data Low and clock High, starts clocking in the serial
data from the FLEX chip. The data is followed by an odd parity bit and a High
stop bit. The handshake signal of the data line starting out Low takes the place
of the start bit when sending commands to the mouse.
With the FLEX chip clock and data drivers both tri-stated, the mouse then
responds to this message by sending an acknowledge message code, FA, back
to the FLEX chip. Data from the mouse includes a Low start bit, eight data bits,
an odd parity bit, and a High stop bit. The mouse, as always, drives the clock
line for the serial data transmission. The mouse is now initialized.

11.3 Mouse Data Packet Processing
As long as the FLEX chip clock and data drivers remain tri-stated, the mouse
then starts sending 3-byte data packets at the power-up default sampling rate of
100 per second. Bytes 2 and 3 of the data packet contain X and Y motion
values as was seen in Table 11.2. These values can be positive or negative, and
they are in two's complement format.
For a video cursor such as is seen in the PC, the motion value will need to be
added to the current value every time a new data packet is received. Assuming
640 by 480 pixel resolution, two 10-bit registers containing the current cursor

Figure 11.1 Transmission of Mouse Initialization Command.



176 Rapid Prototyping of Digital Systems Chapter 11

row and column addresses are needed. These registers are updated every packet
by adding the sign extended 8-bit X and Y motion values found in bytes 2 and
3 of the data packet. The cursor normally would be initialized to the center of
the video screen at power-up.

11.4 An Example Design Using the Mouse UP1core
In this example design, the mouse drives the seven-segment LED displays. The
most-significant display contains the high bits of the cursor row address and the
least-significant display contains the high bits of the cursor column address.
The left button and the right button drive the MSD and LSD decimal points.
The mouse cursor powers up to the center position of the 640 by 480 video
screen. Note that the mouse clock and data pins must be bi-directional.

11.5 For Additional Information
The IBM PS/2 Hardware Interface Technical Reference Manual, IBM
Corporation, 1988, contains information on the mouse in the Keyboard and
Auxiliary Device Controller Chapter.

11.6 Laboratory Exercises
1.

2.

3.

4.

Generate a video display that has a moving cursor controlled by the mouse using the
Mouse and VGA_Sync UP1cores. Use the mouse buttons to change the color of the
cursor.

Use the mouse as input to a video etch-a-sketch. Use a monochrome 64 by 64 1-bit pixel
RAM in your video design. Display a cursor. To draw a line, the left mouse button
should be held down.

Use the mouse as an input device in another design with video output or a simple video
game such as pong, breakout, or Tetris.

Write a mouse driver in Verilog. Use the mouse information provided in sections 11.2
and 11.3.


