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Multistage Bandpass Delta Sigma Modulators 

David B .  Ribner 

Abstract-A new architecture for oversampled delta sigma AID con- 
version of high-frequency n m w  band signals using cascaded low-order 
stages to obtain high overall order of noise shaping is described. The 
architecture involves using resonators in individual stages to suppress 
quantization noise at the resonant frequency. Many of the problems of 
previous single stage high-order architectures including poor stability, 
large component spread and design complexity are overcome by this 
new approach. Switched capacitor resonator circuit implementations and 
simulation results for a sixth-order modulator example are included. 
Estimates of the potential for 16-bit AID conversion of 2.5 MHz signals 
exceed the 80 kHz capability of existing monolithic oversampled CMOS 
AIDS. 

I. INTRODUCTION 
Recently, oversampled delta sigma modulation has been extended 

from lowpass to bandpass signal frequency ranges [1]-[5]. This 
potentially enables oversampled AID conversion of higher frequency 
signals than was previously possible in the lowpass case. With a 
lowpass modulator the maximum signal frequency that's converted 
is at a frequency of Fs/ (2R)  where F, is the modulator sampling 
rate and R is the oversampling rate, whereas a bandpass modulator 
can convert signals right up to frequencies of F,/2.  However, the 
bandwidth of the bandpass modulator is still limited to Fs/ (2R) ,  
the same as the lowpass modulator. Due to its ability to handle high- 
frequency narrow-band signals, the bandpass modulator is well suited 
for AID conversion of IF signals that arise, for instance, in radios 
and modems. 

Previous work on bandpass modulators has employed single- 
quantizer loop structures based on earlier work on high-order, lowpass 
modulators [l], [2], [5],  [16]. These networks have the disadvantage 
of only conditional stability, and of large component spread and 
relatively high design complexity, i.e. design and realization of a 
high-order elliptic filter. An alternate architecture for lowpass mod- 
ulators is cascaded connections of lower-order modulators [6]-[ 141. 
If each stage, in this configuration, is second-order or lower, then 
the entire high-order modulator is unconditionally stable. In addition, 
the cascaded architecture tends to result in low component spreads, 
often with integer component ratios. A further advantage of cascaded 
networks is that higher overall resolution can be obtained, without 
sacrificing linearity, by simply using multi-bit quantization, instead 
of single-bit quantization, in the final stage [13], [14]. 

These significant advantages have motivated the work reported in 
this paper, namely the extension of lowpass cascaded modulators 
to the bandpass case. This new class of modulators is arrived at 
principally through the substitution of resonators for the integrators 
used in the lowpass modulators [3], [4]. Additional changes are 
needed in the transfer functions of the coupling networks that combine 
the separate outputs of the multiple stages into a single digital signal 
to handle the bandpass case. It is convenient to operate bandpass 
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modulators at one quarter the sampling rate, i.e., Fs/4 ,  since this 
allows for a very simple resonator to be used. It also allows single- 
loop structures of fourth-order to be implemented with unconditional 
stability. The following sections discuss various cascaded modulator 
networks and provide simulations results for a specific example. 

11. CASCADED BANDPASS MODULATORS 
The resonator used in these modulators has a z domain transfer 

function of 

This resonator has a pair of complex conjugate poles at z = &j 
giving rise to resonance at Fs/4 .  In contrast, an integrator has a 
single pole at dc (z = 1 ) .  

In a lowpass cascaded modulator of order M ,  the noise-shaping 
frequency response is sinusoidal as shown in the following equation 
[IO]. 

where g is a scaling coefficient dependent on the architecture. In 
contrast to this, the noise-shaping frequency response for a cascaded 
Fs/4  bandpass modulator of order 2M is 

(2.3) 

The cosinusoidal response arises here since the noise shaping zeros 
of Fs/4  bandpass modulators are at wT = & s / 2  instead of at dc. 
It can be shown that the number of bits resolution of the bandpass 
modulator is 

Bits = (M+1/2) logz  R-log, [ ~ ' . l rM ] + 1 0 g ~ ( 2 ~ - 1 )  (2.4) d m  
where Q is the number of bits in the quantizer of the final stage. This 
same expression applies for a lowpass, modulator of half the order of 
the bandpass modulator [ll]. 

A. Multiple Second-Order Resonator Cascades 
The multiple second-order cascade structure, shown in Fig. 1, 

is derived from the lowpass multiple first-order cascade structure 
[7]-[lo]. It has a z domain transfer function of 

where g. = l / ( j 2 . . . j s ) , h z  = l / k E ,  N is the number of stages 
and Q N ( z )  is the noise from the quantizer of the final stage. Scaling 
coefficients gz and h, are used to scale signal levels to avoid clipping. 
Since each stage is second-order, the order of the cascaded modulator 
is 2N.  An alternative multiple second-order cascade structure using 
the resonator signal R, of the preceding stage as the input to each of 
the following stages instead of the quantization error signal is also 
feasible [8], [lo]. This alternate approach, borrowed from lowpass 
modulators, simplifies the implementation somewhat. 
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Fig. 1. Multiple second-order resonator cascade modulator. 
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Fig. 2. Fourth-order second-order resonator cascade modulator. 

B. Fourth-Order Second-Order Resonator Cascades 
Fig. 2 shows a sixth-order bandpass modulators consisting of a 

fourth-order modulator followed by a second-order modulator. This 
modulator, derived from a lowpass second-order first-order cascade 
modulator [9]-[14], has the benefit of considerably lower sensitivity 
to component mismatch, and finite op amp gain [lo]. The z domain 
transfer function of this bandpass modulators is 

where g2 = l / ( j ~ k l ~ k ~ b )  and Q2(z)  is the noise signal from the 
quantizer in the second loop. In constrast to the modulator in Fig. 
1, this modulator applies the resonator signal from the first stage 
directly as the input to the second stage. It is also possible to use 
the quantization noise signal of the first stage as the input of the 
second stage. 

Since the first stage of these cascaded modulators is a single- 
quantizer-loop structure of fourth-order, the question of stability 
arises if the quantizer is two-level. Normally modulators above 
second-order are unstable with a two-level quantizer. This network, 
however can be viewed as a two-path network that maps z to -z2 
by simply inverting alternate samples [3]. Specifically, the bandpass 
delta sigma modulators here, with cosinusoidal noise shaping, are 
equivalent to two interleaved lowpass delta sigma modulators, with si- 
nusoidal noise shaping, with interleaved outputs, alternately negated. 
Therefore the fourth-order, single-loop bandpass modulator is stable 
since a second-order lowpass modulator is stable. 

R k r  

C. Multiple Fourth-Order Resonator Cascades 
It is also possible to develop high-order bandpass modulators using 

a cascade of N fourth-order modulators. This results in an overall 
order of 4N. Fig. 3 shows one type of multiple fourth-order cascade 
in which the inverted quantization error of a given stage is used as the 
input to the following stage. In this configuration g, = l / ( j 2  - jI) 
and h, = l / (kZakz t , ) .  Another implementation, where the resonator 
signal of a stage R, is used as the input to the next stage, is 
also possible. From a practical standpoint, it's doubtful that versions 
beyond eighth-order, i.e., above two stages, will come close to the 
theoretical performance due to component mismatch, except at very 
low oversampling ratios. 

111. RESONATOR IMPLEMENTATIONS 
Implementation of precision F,/4 resonators is of crucial impor- 

tance to the success of any of these bandpass modulator networks. 
In its simplest form, this resonator can be implemented as a double 
analog delay in a negative feedback loop. This can be realized using 
sample and holds for the delay elements [5] .  Another approach is 
to use 2-path integrators to implement the resonators, however, this 
approach is sensitive to op amp gain andor capacitor mismatch 
depending on the specific circuit [3], [4]. The approach suggested 
here is to implement the resonator using two switched-capacitor (SC) 
integrators, coupled in a resonant loop [2]. Although the two-path 
approach is superior in accuracy of resonant frequency, the coupled 
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Fig. 4. Resonator using unit-delay integrators. 

integrator circuit is expected to have better resonator quality-factor 
( Q )  sensitivity to circuit nonidealities such as component mismatch, 
finite op amp gain and bandwidth. In narrowband applications the 
capacitor matching of the coupled integrator resonator needs to 
be good to avoid lowering the signal-to-noise ratio (SIN). The 
degradation from ideal performance due to a relative resonator 
frequency error of E for the sixth-order modulator of Fig. 2 is to 
a first approximation 

where UQ1/UQ2 is the ratio of the quantization noise of the first 
stage to the second stage and is approximately equal to 1.5 over 
the passband. Two resonator approaches using SC integrators are 
described next. 

A. Unit Delay Integrator based Resonator 
A block diagram of a resonator using unit delay integrators is 

shown in Fig. 4(a), and a possible single-ended SC implementation 
is shown in Fig. 4(b). The signal inversion shown in the loop can be 
realized in a differential structure by reversal of signal connections. 
In a single-ended structure, the inversion can be realized by changing 
the clock phasing of one of the SC integrators to make it inverting. 

B. LDI Biquad Resonator 

Another resonator implementation makes use of the lossless digital 
integrator (LDI) biquad structure without damping [15]. The block 
diagram shown in Fig. 5(a) consists of a two integrator loop with a 

m- 

Fig. 5.  Resonator using LDI biquad. 

total loop delay of 2- l .  This structure is simpler and less sensitive 
to component mismatch than the preceding network. Error in the 
integrator gains here only result in an error in the resonant frequency. 
In the other circuit, the same types of errors can additionally lower 
the Q of the resonator. A possible single-ended switched-capacitor 
implementation for the LDI resonator is shown in Fig. 5(b). The 
earlier comments about signal inversion apply here equally well. 

Iv. SIMULATION RESULTS 

Simulation results for the sixth-order cascaded modulator using the 
fourth-order, second-order cascade structure of Fig. 2 along with the 
LDI resonator are shown in Fig. 6 for j 2  = 1, kl, = k l b  = kz = 112 
and g2 = 4. This plot shows the S/N versus the input level at 
an oversampling ratio R = 64 for a sinusoidal input signal at a 
frequency of 0.25002 F, (0 dB is full-scale). The solid line shows 
performance in the ideal case whereas the dashed line shows the 
result with a 0.2% resonator frequency error. The peak SIN of 94.5 
dB reached in the ideal case drops by 5.3 dB with the mismatch. 
Over the entire curve the average drop in SIN is 3.2 dB close to the 
2.8 dB predicted by (3.1) Similar simulations have been performed 
for third-order lowpass modulator using the analogous second-order 
first-order cascade structure and virtually identical ideal performance 
was obtained in [lo, Fig. 101. 

V. CONCLUSION 

The modulators described here are a useful extension to cascaded 
modulators already widely used for lowpass modulators. These mod- 
ulators extend the same benefits to bandpass delta sigma modulation 
their counterparts did to lowpass delta sigma modulation, namely 
unconditional stability, low component ratio spreads, and amenability 
for multi-bit quantization without loss of linearity. One disadvantage 
to these networks, in certain applications, may be the restriction 
of operation centered at one fourth the sampling rate. A future 
paper will report on an approach to extend cascaded modulators to 
operation at arbitrary center frequency. Finally, extrapolating from 
previous lowpass modulator results [12], it is estimated that 16-bit 
AID conversion of narrowband 2.5 MHz signals at a conversion rate 
of 10 MHz. is feasible, exceeding the capability of conventional 
monolithic CMOS AIDS. 
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Fig. 6. SIN versus input level for sixth-order modulator of Fig. 2. 
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Wide-Area Adaptive Active Noise Cancellation 

A. J. Efron and L. C. Han 

Abshct-This paper describes an adaptive active noise cancellation 
(ANC) system that is based on an output-whitening approach and is an 
extension of the work of Graupe and Efron on single point adaptive ANC. 
The controller works by continually estimating the time-series parameters 
of the noise to be canceled and by forcing the cancellation network 
to follow the identified parameters, so that the output is whitened. To 
address the problem of wide-area cancellation, a system that consists of 
a weighted array of single point output-whitening cancellation systems is 
proposed. Each controller is chosen to cancel the local temporal effects 
of the noise, and the array weights are chosen to match the wavefront 
shape. A comparison of cancellations based on single-point and wide-area 
systems demonstrates the superiority of the wide-area system. 

I. INTRODUCTION 

Active Noise Control (ANC) is a technique of quieting unwanted 
acoustic emission by using a secondary source to create sound that 
is equal in amplitude (volume), identical in frequency (pitch) and 

Manuscript received October 26,1992; revised January 19, 1993. This paper 
was recommended by Associate Editor G. S. Moschytz. 

A. J. Efron and L. C. Han are with the Signal and Image Research Lab, 
Department of Electrical Engineering and Computer Science, University of 
Illinois, Chicago, Illinois 60680 USA. 

IEEE Log Number 9401414. 

1057-7130/94$04.00 0 1994 IEEE 


