2. BIAS POINT ANALIZA

2.1. Određivanje raspodele jednosmernih struja i napona

Ova analiza daje vrednost napona i struja u kolu u jednosmernom režimu rada. Ona podrazumeva sledeće:

- kondenzatori su otvorene veze
- kalemovi su kratki spojevi
- svi AC (VAC, IAC) i vremenski promenjivi generatori imaju vrednosti nula (VSIN, ISIN, VPULSE, IPULSE...), osim kada imaju definisanu vrednost **DC=value**, a ona je tada merodavna za **Bias Point** analizu.

Simulation Settings - analiz	a u vremenskom domenu	X	
General Analysis Include File	es Libraries Stimulus Options Data Collection Prob	e Window	
Category:	Include the following in the output (.OUT) file:	(.OPTION)	
Analog Simulation Gate-level Simulation Output file	 Detailed summary and accounting information Subcircuit expansion and Load Bias files Statements included from libraries Device summary Bias point node voltages Node summary (connections) Circuit file statements Model parameter values 	(ACCT) (EXPAND) (LIBRARY) (LIST) (NOBIAS) (NODE) (NOECHO) (NOMOD)	
	 ✓ Digital timing and hazard messages ✓ Page breaks and banners for each section ✓ Value of each PSpice option Number of digits in printed values: 4 ★ Output file width: 80 ★ characters 	(NOOUTMSG) (NOPAGE) (OPTS) (NUMDG) Reset	
	OK Cancel Apply	Help	

Slika 2.1 Podešavanje parametara koji se zapisuju u Output File.

Ova analiza se obavlja automatski pri svakom pokretanju simulacije jer su jednosmerne vrednosti napona i struja potrebne za sve ostale analize. Ako je Bias Point analiza selektovana. u izlaznu datoteku mogu se zapisati i dodatni podaci. Šta će biti zapisano u Output file podešava se aktiviranjem opcije Options/Output file u prozoru za zadavanje analiza, slika 1.22. Aktiviranjem ovih opcija dobijen je prozor prikazan na slici 2.1. U našem slučaju u Output file-u će biti zapisane iednosmerne

Sinka 2.1 1 buesavanje parametara koji se zapisaju u Output 1 ne.

vrednosti napona, stanja digitalnih kola i vrednosti parametara u modelu nelinearnih elemenata. Radi lakšeg prepoznavanja, preporučuje se promena imena čvorova u šemi(**Place net alias**). Obično se po završetku analize automatski ulazi u **PROBE.** U ovom prozoru, na levoj strani pri

vrhu, nalazi se ikonica View Simulation Output File. Njenim aktiviranjem ulazi se u izlaznu datoteku. Isti efekat proizvodi i aktiviranje Pspice/View Output File iz Capture editora.

Znatno komfornije posmatranje napona svih čvorova (V), struja svih grana (I) i snage koja se razvija na svim elementima (W) može se dobiti i u samom **Capture** editoru. Potrebno je aktivirati **Pspice/Bias Points/Enable**, pokrenuti analizu, vratiti se u prozor sa šemom i aktivirati neku od ikonica sa natpisom V, I ili W.

Nekad nije potrebno da sve vrednosti budu vidljive na šemi. Ako ne želimo neku vrednost, npr. napon nekog čvora, prikazati na ekranu, onda ovu vrednost označimo levim tasterom miša, a onda aktiviramo ikonicu II. Ova ikonica je pre toga bila neaktivna. Ako je potrebno da vrednost koju smo učinili nevidljivom ponovo vratimo na ekran, potrebno je levim tasterom miša označiti neku vezu koja se spaja sa čvorom čiju vrednost napona želimo videti, a potom aktivirati istu ikonicu III. Podešavanje prikazivanja neke struje ili snage na ekranu može se izvesti i na drugi način. Levim tasterom miša treba označiti komponentu, a onda aktivirati ikonicu III., posle čega se na ekranu neće videti struja elementa, ili III., posle čega se neće videti snaga. Vraćanje ovih vrednosti na ekran obavlja se selektovanjem komponente, a zatim i aktiviranjem neke od napred navedenih ikonica. Kod elemenata sa više pristupa (tranzistor) ova aktivnost vodi prikazivanju, ili neprikazivanju, struja svih priključaka. Kada se ne želi prikazati neka struja kod elemenata sa više pristupa, onda treba selektovati samo tu vrednost struje i aktivirati ikonicu III.

Primeri određivanja raspodele jednosmernih struja i napona

Slika 2.2 Primer analize jednog rezistivnog kola.

1. Rezistivna kola

Na slici 2.2 prikazana je šema jednog rezistivnog kola. Ovo kolo je deo jednog D/A konvertora.

Posle crtanja šeme kola aktivira se **Pspice/New Simulation Profile**, zatim se upiše ime analize (ovde dc bias) i potom se u polju Analysis Type podesi **Bias Point**, slika 2.3. Zadavanje analize završava se sa OK. Simulacija se pokreće sa Pspice/Run (ili F11, ili aktiviranjem ikonice Run Pspice). Po

obavljenoj analizi otvara se prozor za grafičko prikazivanje rezultata simulacije PROBE. Pošto nam on nije potreban, sa ALT-TAB se treba vratiti u prozor sa šemom, ili zatvoriti prozor PROBE. Aktiviranjem sve tri ikonice V, I i W dobijaju se naponi svih čvorova, struje svih grana i snaga (proizvod napona i struje se usaglašenim referentnim smerovima) na svakom od elemenata kola sa slike 2.2.. Rezultat ovih aktivnosti je prikazan na slici 2.4.

Slika 2.3 Zadavanje Bias Point analize.

2. Rezistivna kola sa zavisnim generatorima

Na slici 2.5 je prikazano kolo u kome se želi odrediti raspodela jednosmernih napona i struja. Na slici 2.6 je prikazana šema kola pripremljenog za ORCAD PSPICE simulaciju. Posle crtanja šeme zadata je Bias Point analiza, Pspice/Run (ili F11), a posle pokretanja analize dobijeni su naponi i struje prikazani na slici 2.7.

Slika 2.5 Primer rezistivnog kola za kontrolisanim generatorima

Slika 2.6 Električna šema kola sa slike 2.5 pripremljena za simulaciju u ORCAD PSPICE-u

Slika 2.7 Jednosmerne struje i naponi u kolu sa slike 2.6.

numeričke greške koju unosi PSPICE.

3. Kola sa reaktivnim elementima

Slika 2.8 Raspodela jednosmernih napona i struja u jednom LCC kolu pri prostoperiodičnoj pobudi.

Slika 2.9 Raspodela jednosmernih napona i struja u jednom LCC kolu pri superponiranim prostoperiodičnoj i DC pobudi.

Slika 2.10 Raspodela napona i struja u kolu sa jednom diodom.

Posmatrajući kolo sa slike 2.5, prostim rezonovanjem dolazi se do sledećeg zaključka: pošto je struja koja teče kroz otpornost R_4 ista kao i struja koja teče kroz granu sa strujno kontrolisanim generatorom, prema prvom Kirhofovom zakonu, struja koja protiče kroz otpornost R_3 mora biti jednaka nuli. Simulacija pokazuje da je ova struja 1,5pA, što je posledica

Na primeru ranije kreiranog LCC oscilatornog kola, slika 1.14, pokazaćemo određivanje jednosmernih i struja u ovom napona kolu. Pokretanjem Bias Point analize dobijene su struje i naponi kao na slici 2.8. Pri određivanju DC vrednosti napona i struja Bias Point analiza smatra da su DC naponi vremenski promenljivih generatora nula (osim kada imaju definisanu vrednost DC=). Stoga su i svi naponi i struje u kolu jednaki nuli. Kada se kod ulaznog generatora podesi da je DC=1V neki naponi u kolu imaće netrivijalne vrednosti, slika 2.9. Zato što je u ustaljenom stanju struja kondenzatora nula, struja koja protiče kroz pobudni generator takođe je nula, isto kao napon na otporniku R1. U ustaljenom

stanju napon na kalemu jednak je nuli, što se sa slike 2.9 da uočiti.

4. Kola sa diodama

Na slici 2.10 prikazano je standardno kolo za testiranje dioda. Na istoj slici je prikazana i raspodela napona i struja na standardnoj temperaturi T = 27 °C. Kada se postavi da je temperatura ambijenta u kome se kolo nalazi T = 70 °C raspodela napona i struja postaje kao na slici 2.11. Radnu temperaturu smo postavili u prozoru za zadavanje analiza, slika 2.11.

Slika 2.11 Zadavanje nove temperature ambijenta i nova raspodela napona i struja u kolu sa jednom diodom.

in the Za uve vieunosti temperature amorfenta.				
Temperatura	-25 deg C	85 deg C		
IS	1.466E-11	1.577E-07		
VJ	6.318E-01	3.483E-01		
СЈО	3.621E-12	4.435E-12		
RS	5.664E-01	5.664E-01		
IKF	4.417E-02	4.417E-02		
BV	1.000E+02	1.000E+02		
VD	0.7954	0.6199		

Tabela 2.1 Parametri u modelu diode i napon na diodi 1N4148 za dve vrednosti temperature ambijenta.

Zadavanjem liste vrednosti temperatura -25 85 i ponovnom simulacijom u **Output File-u** se dobijaju vrednosti parametara diode 1N4148 i napon na njoj na ove dve temperature. Rezultati su tabelarno prikazani u tabeli 2.1.

5. Kola sa bipolarnim tranzistorom

Na slici 2.12 pokazana je polarizacija bipolarnog tranzistora sa 4 otpornika. Na istoj slici prikazane su i vrednosti napona i struja u

kolu dobijene Bias Point analizom.

Potom je sa istim kolom zadata nova **Bias Point** analiza, ali je sada označena opcija da se u izlaznu datoteku zapisuju vrednosti parametara u modelu tranzistora za male signale (g_m , r_{π} itd.) u okolini mirne radne tačke (.OP). Pored ovoga je zadata i lista vrednosti temperatura -25 85 na kojoj se određuje raspodela jednosmernih vrednosti struja i napona u kolu. Po završetku analize otvoren je **Output File** (**View Simulation Output File**). U tabeli 2.2 tabelarno su prikazani parametri u modelu tranzistora 2N2222 za male signale, kao i karakteristične jednosmerne vrednosti struja kroz priključke tranzistora i napona između njegovih priključaka.

bipolarnim tranzistorom.

Tabela 2.2 Parametri tranzistora 2N2222 za dve vrednosti temperature ambijenta.

Temperatura	-25 deg C	85 deg C
IB	9.89E-06	6.79E-06
IC	1.13E-03	1.36E-03
VBE	7.41E-01	5.49E-01
VBC	-1.42E+00	-1.04E+00
VCE	2.16E+00	1.59E+00
BETADC	1.14E+02	2.01E+02
GM	5.27E-02	4.39E-02
RPI	2.40E+03	5.02E+03
RX	1.00E+01	1.00E+01
RO	6.67E+04	5.51E+04
CBE	5.66E-11	5.64E-11
CBC	4.96E-12	5.56E-12
CJS	0.00E+00	0.00E+00
BETAAC	1.26E+02	2.21E+02
CBX/CBX2	0.00E+00	0.00E+00
FT/FT2	1.36E+08	1.13E+08

2.2. Određivanje DC osetljivosti

Osetljivost neke veličine y na promenu vrednosti promenljive x se definiše kao $S_x^y = \lim_{\Delta x \to 0} \frac{\Delta y / y}{\Delta x / x} = \frac{\partial y}{\partial x} \frac{x}{y}$. Osetljivost se određuje u okolini mirne radne tačke, nalazeći promene

željenih veličina na promene parametara kola. Ona je važna karakteristika jer daje podatak koji parametar najviše utiče na neku veličinu (npr. na struju kolektora, ili drejna). Ukoliko je to neka otpornost, onda ta otpornost treba da bude sa manjom tolerancijom, ukoliko je to neki naponski generator, onda on treba da bude sa što manjom varijacijom napona.

PSPICE daje osetljivost jednosmernih napona čvorova, ili razlike napona, i struja kroz idealne

naponske generatore. Ukoliko se želi odrediti osetljivost struje neke grane, tada treba u tu granu redno ubaciti idealni naponski generator čija je *ems* nula. Pošto mu je *ems* nula, on ne utiče na jednosmerne vrednosti napona i struja u kolu. Određivanjem osetljivosti struje ovog generatora određuje se i osetljivost struje grane u kojoj se on nalazi.

Primer određivanja DC osetljivosti (DC Sensitivity analysis)

Određivanje osetljivosti struje kolektora u kolu sa bipolarnim tranzistorom

Na slici 2.13 prikazana je šema kola sa bipolarnim tranzistorom, kao i prozor u kome su zadati parametri za analizu osetljivosti kolektorske struje, odnosno struje naponskog generatora V1 (**.SENS**).

Slika 2.13 Zadavanje parametara za analizu DC osetljivosti.

Sa OK treba zatvoriti prozor za zadavanje analize. Potom se sa **Run Pspice** pokrene analiza, a po njenom završetku treba otvori **Output File**. U ovom file-u se nalaze podaci o osetljivosti kolektorske struje, kako na promenu parametara tranzistora, tako i na promenu vrednosti ostalih elemenata kola. U nastavku su date vrednosti osetljivosti preuzete iz **Output File-a**.

DC SENSITIVITIES OF OUTPUT I(V_V1)

ELEMENT	ELEMENT	ELEMENT	NORMALIZED
NAME	VALUE	SENSITIVITY	SENSITIVITY
	(AMPS/UNIT)	(AMPS/PERCENT)	
R_R1	3.000E+04	-3.747E-08	-1.124E-05
R _ R 2	2.000E+04	5.179E-08	1.036E-05
R R3	1.000E+03	-1.137E-06	-1.137E-05
R ⁻ R4	1.500E+03	-1.828E-09	-2.741E-08
V Vcc	5.000E+00	3.644E-04	1.822E-05
v v 1	0.000E+00	-1.470E-06	0.000E+00
Q Q1			
RB	1.000E+01	-7.368E-09	-7.368E-10
RC	1.000E+00	-1.828E-09	-1.828E-11
RE	0.000E+00	0.000E+00	0.000E+00
BF	2.559E+02	2.214E-07	5.666E-07
ISE	1.434E-14	-2.734E+09	-3.921E-07
BR	6.092E+00	-4.596E-15	-2.800E-16
ISC	0.000E+00	0.000E+00	0.000E+00
IS	1.434E-14	3.731E+09	5.350E-07
NE	1.307E+00	5.778E-04	7.552E-06
NC	2.000E+00	0.000E+00	0.000E+00
IKF	2.847E-01	1.655E-06	4.712E-09
IKR	0.000E+00	0.000E+00	0.000E+00
VAF	7.403E+01	-2.445E-08	-1.810E-08
VAR	0.000E+00	0.000E+00	0.000E+00

Kao što se vidi, kolektorska struja je najosetljivija na promenu napona napajanja Vcc.

2.3. Određivanje DC prenosne karakteristike za male signale

Određivanje DC pojačanja za male signale u okolini zadate mirne radne tačke, ulazne i izlazne otpornosti takođe se obavlja pokretanjem **Bias Point** analize. Potrebno je aktivirati opciju **Calculate small-signal DC gain (.TF)**, posle čega treba uneti u prazna polja ime ulaznog nezavisnog generatora (naponskog ili strujnog) i izlaznu promenljivu u obliku V(ime izlaznog čvora). Po završetku analize rezultati se smeštaju u **Output File**.

Primeri određivanja vrednosti parametara za male signale

1. CMOS pojačavač

Na slici 2.14 prikazan je jedan CMOS pojačavač. U kolo su prvo uneti simboli NMOS i PMOS tranzistora MBREAKN3 i MBREAKP3, a potom je svakom od njih promenjen model. Promena modela obavlja se selektovanjem nekog od tranzistora, da bi se potom sa Edit/Pspice Model (ili desnim klikom miša pa Edit Pspice Model) ušlo u Pspice Model Editor gde se menja ime i upisuju vrednosti parametara novog modela. U ovom slučaju pomoću Pspice Model Editor-a je postavljeno za NMOS tranzistore: .model MYNMOS NMOS VTO=0.7 kp=110u lambda=0.04 i za PMOS tranzistore .model MYPMOS PMOS VTO=-0.7 KP=50U LAMBDA=0.05. Parametri analize su podešeni prema slici 2.14, a po njenom završetku u Output File-u su, pored ostalih, smešteni i podaci o parametrima za male signale.

Slika 2.14 Zadavanje analize za određivanje parametara za male signale.

Na slici 2.14 prikazane su jednosmerne vrednosti napona i struja u kolu CMOS pojačavača, a u nastavku su date vrednosti parametara za male signale preuzete iz **Output File-a**.

**** SMALL-SIGNAL CHARACTERISTICS V(OUT)/I_Ig = 4.726E+05 INPUT RESISTANCE AT I_Ig = 4.172E+03 OUTPUT RESISTANCE AT V(OUT) = 4.630E+05

Kao što se vidi, u okolini zadata mirne radne tačke, prenosna otpornost ovog kola je $r_m = v_{out} / i_g = 472,6 \,\mathrm{k\Omega}$, dok su ulazna i izlazna otpornost $R_{in} = 4,172 \,\mathrm{k\Omega}$ i $R_{out} = 463 \,\mathrm{k\Omega}$.

2. CMOS diferencijalni pojačavač

Na slici 2.15 prikazan je jedan diferencijalni pojačavač u CMOS tehnologiji. U Pspice Model Editoru podešeni su parametri MOS tranzistora: .model MYNMOS NMOS VTO=0.7 kp=110u lambda=0.04 GAMMA=0.4 PHI=0.7 i .model MYPMOS PMOS VTO=-0.7 KP=50U **LAMBDA=0.05**. Na slici 2.15 pokazan je i način postavljanja analize za određivanje parametara u modelu za male signale. Pored ove analize označeno je i polje za određivanje parametara za male signale poluprovodnika (ovde MOS tranzistora).

Slika 2.15 Zadavanje analize za određivanje parametara za male signale CMOS diferencijalnog pojačavača.

Na osnovu rezultata ove analize u nastavku su dati parametri svih MOS tranzistora preuzeti iz **Output File-a**.

**** MOSFETS

NAME	M M4	M M1	M M5	M M6	M M3	M M2
MODEL	MYPMOS	MŸNMOS	MŸNMOS	MŸNMOS	MYPMOS	MYNMOS
ID	-2.47E-05	2.47E-05	4.94E-05	5.00E-05	-2.47E-05	2.47E-05
VGS	-1.01E+00	1.03E+00	9.09E-01	9.09E-01	-1.01E+00	1.03E+00
VDS	-1.01E+00	1.67E+00	6.20E-01	9.09E-01	-1.01E+00	1.67E+00
VBS	0.00E+00	-6.20E-01	0.00E+00	0.00E+00	0.00E+00	-6.20E-01
VTH	-7.00E-01	8.25E-01	7.00E-01	7.00E-01	-7.00E-01	8.25E-01
VDSAT	-3.07E-01	2.05E-01	2.09E-01	2.09E-01	-3.07E-01	2.05E-01
Lin0/Sat1	-1.00E+00	-1.00E+00	-1.00E+00	-1.00E+00	-1.00E+00	-1.00E+00
if	-1.00E+00	-1.00E+00	-1.00E+00	-1.00E+00	-1.00E+00	-1.00E+00
ir	-1.00E+00	-1.00E+00	-1.00E+00	-1.00E+00	-1.00E+00	-1.00E+00
TAU	-1.00E+00	-1.00E+00	-1.00E+00	-1.00E+00	-1.00E+00	-1.00E+00
GM	1.61E-04	2.41E-04	4.72E-04	4.78E-04	1.61E-04	2.41E-04
GDS	1.18E-06	9.27E-07	1.93E-06	1.93E-06	1.18E-06	9.27E-07
GMB	0.00E+00	4.19E-05	1.13E-04	1.14E-04	0.00E+00	4.19E-05

U istom file-u se nalaze i podaci o naponskom pojačanju, ulaznoj i izlaznoj otpornosti diferencijalnog pojačavača:

**** SMALL-SIGNAL CHARACTERISTICS

```
V(OUT)/V_VG = 1.141E+02
```

```
INPUT RESISTANCE AT V_VG = 1.000E+20
```

```
OUTPUT RESISTANCE AT V(OUT) = 4.767E+05.
```

Na osnovu prethodnog se vidi da je diferencijalno pojačanje $a_d = v_{out} / v_d = v_{out} / v_g = 114,1$.

Kada se gejt tranzistora M2 odspoji od mase i poveže sa gejtom tranzistora M1 dobija se diferencijalni pojačavač sa naponom srednje vrednosti na ulazu. Ponovnim pokretanjem ranije zadate analize u **Output File-u** se dobijaju podaci o pojačanju napona srednje vrednosti $a_s = v_{out} / v_g$. Parametri tranzistora u modelu za male signale su nepromenjeni, a zbog drugačije konfiguracije kola se menja naponsko pojačanje. U ovom slučaju u Output File-u je zapisano:

SMALL-SIGNAL CHARACTERISTICS

```
V(OUT)/V_VG = -5.030E-03
INPUT RESISTANCE AT V VG = 1.000E+20
```

```
OUTPUT RESISTANCE AT V_VG = 1.000E+20
OUTPUT RESISTANCE AT V(OUT) = 4.767E+05
```

Na osnovu diferencijalnog i pojačanja napona srednje vrednosti $a_s = -0,00503$ dobija se faktor potiskivanja napona srednje vrednosti na ulazu pojačavača

$$\rho = a_d / a_s = 22684 [87dB].$$