
Socket programming basicsSocket programming basics

Using UDP Sockets

• User Datagram Protocol (UDP): end-to-end service different from TCP
• UDP performs only two functions:

• It adds another layer of addressing (ports) to that of IP, and
• it detects data corruption that may occur in transit and discards

any corrupted datagrams.
• UDP sockets do not have to be connected before being used.

•TCP is analogous to telephone communication
• UDP is analogous to communicating by mail:• UDP is analogous to communicating by mail:

• do not have to "connect" before send a package,
• do have to specify the destination address for each one.
• In receiving, a UDP socket is like a mailbox into packages from many
different sources can be placed.
• As soon as it is created, a UDP socket can be used to send/receive
messages to/from any address and to/from many different addresses in
succession.

Using UDP Sockets

• To allow the destination address to be specified for each
message, the sockets API provides a different sending
routine that is generally used with UDP sockets: sendto(). routine that is generally used with UDP sockets: sendto().
• Similarly, the recvfrom() routine returns the source
address of each received message in addition to the
message itself.

Using UDP Sockets

int sendto (int socket, const void *msg, unsigned int msgLength, int flags,
struct sockaddr *destAddr, unsigned int addrLen)

int recvfrom (int socket, void *msg, unsigned int msgLength, int flags,
struct sockaddr *srcAddr, unsigned int *addrLen)

• The first four parameters to sendto() are the same as those for send().
• The two additional parameters specify the message's destination. They will
invariably be a pointer to a

• struct sockaddr_in, and
• sizeof(struct sockaddr_in), respectively.

•recvfrom() takes the same parameters 3 as recv().
•addrLen is an inout parameter in recvfrom():

On input it specifies the size of the address buffer srcAddr;
On output it specifies the size of the address that was copied into
the buffer.

Using UDP Sockets

Two typical errors
(1)passing an integer value instead of a pointer to

an integer for addrLenan integer for addrLen
(2)forgetting to initialize the pointed-to length

variable to contain sizeof(struetc sockaddr_in).

UDP Client

• UDP echo client- similar to TCP echo
• except that it does not call connect(), and
• it only needs to do a single receive, because UDP sockets preserve
message boundaries, unlike TCP's byte-stream service.
• UDP client only communicates with a UDP server.
• Many systems include a UDP echo server for debugging and testing • Many systems include a UDP echo server for debugging and testing
purposes; the server simply echoes whatever messages it receives
back to wherever they came from.
• echo client performs the following steps:

(1) it sends the echo string to
the server,
(2) it receives the echo, and
(3) it shuts down the program.

UDP Server
UDP version of the echo server

• It loops forever, receiving a message and then sending the same message
back to wherever it came from
• the server only receives and sends back the first 255 characters of the
message;
• any excess is silently discarded by the sockets implementation. • any excess is silently discarded by the sockets implementation.

• UDP client is example for UDP socket calls
• not suitable for production - if a message is lost going to or from the server, the
call to recvfrom() blocks forever, and the program does not terminate.
• Clients generally deal with this problem through the use of timeouts

Local Broadcast and
Directed Broadcast

•A local broadcast address (255.255.255.255) sends the message to
every host on the same broadcast network.
•Local broadcast messages are never forwarded by routers.

•Directed broadcast allows broadcast to all hostson a specific •Directed broadcast allows broadcast to all hostson a specific
network.
•IP addresses have two parts: the network and the host identifier.
•If the network identifier is X, a directed broadcast address for that
network is an IP address with the high-order bits set to X and the
remaining bits set to 1 (i.e., X111 . . . 111).
•For example, the directed broadcast address for a network with
network identifier 169.125 (first two bytes) is 169.125.255.255.

With subnetting, we consider the subnet identifier part of the
network identifier, so the definition of a directed broadcast
address for a subnet is the same.
For example, if a network with subnet mask 255.255.255.0 has

Directed Broadcast

For example, if a network with subnet mask 255.255.255.0 has
a subnet 169.125.134, the directed
broadcast address for that subnet is 169.125.134.255.

Enkodovanje podataka

17,998,720 i 47,034,615,

sprintf(msgBuffer, "%d %d ", x, y) ;
send(s, msgBuffer, strlen(msgBuffer), 0);send(s, msgBuffer, strlen(msgBuffer), 0);

#define BUFSIZE 132
char msgBuf[BUFSIZE];
.
.
.
sprintf(msgBuffer, "Nd Nd ", deposits, withdrawals);
send(s, msgBuffer, BUFSIZE, 0);

Direktno slanje

send(s, &x, sizeof(x), 0);
send(s, &y, sizeof(y), 0);

int x;
int y;

send(s, &y, sizeof(y), 0);

With UDP this does not work because it results in
two separate datagrams.

Redosled kodiranja

17,998,720 i 47,034,615,

Standard routines to convert
two- and four-byte integers from

native to network byte order

long int htonl(long int hostLong)long int htonl(long int hostLong)

short int htons(short int hostShort)

long int ntohl(long int netLong)

short int ntohs(short int netShort)

Alignment and Padding

- ASCII poruke
- Framing and Parsing

