Podesavanje mreze | razvojnog
okruzenja

*TCP/IP, Telnet servisi pod WIN 10, CMD

*Automatsko konfigurisanje TCP/IP parametara

«/a pocetak iskljucen Firewall

*Ipconfig

*Ping

*Ako je potrbano isklljuCenje ostalih anti-virus programa
*Telnet <adresa> 13

*Telnet <adresa> 17

Socket programming basics

Berkley Sockets

Universally known as Sockets

It is an abstraction through which an
application may send and receive data

Provide generic access to interprocess
communication services

a e.g. IPX/SPX, Appletalk, TCP/IP
Standard API for networking

Sockets
= Uniquely identified by

0 an internet address
0 an end-to-end protocol (e.g. TCP or UDP)

0 a port number

= Two types of (TCP/IP) sockets
a Stream sockets (e.g. uses TCP)
= provide reliable byte-stream service
o Datagram sockets (e.g. uses UDP)

= provide best-effort datagram service
= messages up to 65.500 bytes

= Socket extend the convectional UNIX I/O facilities

o file descriptors for network communication

0 extended the read and write system calls

Sockets

TCP] I FEAFRERER R - UDP S()Ekets

....... Sockets bound to ports

e] #+444s QRATE UDP m[tﬁ

Client-Server communication

m Server

0 passively waits for and responds to clients

0 passive socket
s Client
o 1initiates the communication

0 must know the address and the port of the server

o active socket

IPv4 komunikacija

Application Application

A

C Socket)

[TCP]
[Ip Channel Channel }—P P J

(e.g., Ethernet) ST
Host Router Host

VA

—

[

lae]
A

Sockets - Procedures

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives
Connect Actively attempt to establish a connection
Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

Stream Datagram

"

Server (e.g. TCP) Client Server (e.g. UDP) Client
socket(— sockel() —socket([socket) |
snd bl T

Iist;n(}
v synchmpizatiﬂn '
acciptc} — P Connect)]
reTr{} « ﬁrid{-} > < mﬁ[ﬁm{} «
send() > recv() sendto()

| | |

HH

close() ___ close() close()

Creating and Destroying socket

To communicate using TCP or UDP, a program begins by asking the operating
system to create an instance of the socket abstraction. The function that accomplishes
this is socket(); its parameters specify the flavor of socket needed by the program.

int socket(int protocolFamily, int type, int protocol)
int close(int socket)

* Protocol family: sockets API provides a generic interface for a large number of protocol
families. PF_INET specifies a socket that uses protocols from the Internet protocol family.
* type of the socket: semantics of data transmission with the socket.The constant

SOCK STREAM specifies a socket with reliable byte-stream semantics, SOCK_DGRAM
specifies a best-effort datagram socket.

* Protocol: end-to-end protocol to be used. For the PF_INET protocol family, we want
TCP (identified by the constant IPPROTO_ TCP) for a stream socket and UDP (identified
by IPPROTO UDP) for a datagram socket. Supplying the constant 0 as the third parameter
requests the default end-to-end protocol for the specified protocol

* Return: a nonnegative value for success and -1 for failure

Specifying Addresses

struct sockaddr {
unsigned short sa_family;

char sa_data[14] ;

¥
sa_family sa_data
sockaddr | Family Blob (14 bytes)
i 2 bytes i 2 bytes i 4 bytes E 8 bytes :
sockaddr_in | Family | Port [|Internet address Unused
sin_family sin_port sin_addr sin_zero

Specifying Addresses

struct in_addr

{

s
/* Internet address (32 bits) */

unsigned long s addr;

struct sockaddr in
d
unsigned short sin_family; /* Internet protocol (AF_INET) */
unsigned short sin_port; /* Address port (16 bits) */
struct in_addr sin_addr; /* Internet address (32 bits) */
char sin_zero[8]; /* Not used */

TCP Client

The typical TCP client goes through four basic steps:

1. Create a TCP socket using socket().

2. Establish a connection to the server using connect ().
3. Communicate using send() and recv().

4. Close the connection with close().

int connect(int socket, struct sockaddr *foreignAddress, unsigned int
addressLength)

* socket is the descriptor created by socket ().

* foreignAddress 1s declared to be a pointer to a sockaddr because the sockets API is
generic; for our purposes, it will always be a pointer to a sockaddr in containing the
Internet address and port of the server,

* addressLength specifies the length of the address structure and is invariably given as
sizeof(struct sockaddr in).

* When connect () returns successfully, the socket is connected and communication can
proceed with calls to send() and recv().

TCP Client

int send(int socket, const void *msg, unsigned int msgLength, int flags)
int recv(int socket, void *rcvBuffer, unsigned int bufferLength, int flags)

The default behavior for send() is to block until all of the data is sent

*The flags parameter in both send() and recv() provides a way to change the default
behavior of the socket call.

*Setting flags to 0 specifies the default behavior, send() and recv() return the number
of bytes sent or received or -1 for failure.

TCP Server

1. Create a TCP socket using socket().
2. Assign a port number to the socket with bind().
3. Tell the system to allow connections to be made to that port,
usinglisten().
4. Repeatedly do the following:
* Call accept () to get a new socket for each client connection.
» Communicate with the client via that new socket using
send() and recv().
*Close the client connection using close().

-while the client has to supply the server's address to connect(), the server
has to specify its own address to bind().

int bind(int socket, struct sockaddr *localAddress, unsigned int
addressLength)

TCP Server

int listen(int socket, int queueLimit)

*queuelLimit: parameter specifies an upper bound on the number of incoming
connections that can be waiting at any time. The precise effect of queuelLimit is
very system dependent, so consult your system's technical specifications.)
*listen ()returns 0 on success and - 1 on failure.

The socket that has been bound to a port and marked "listening" is never actually

used for sending and receiving.
it 1s used as a way of getting new sockets, one for each client connection; the server

then sends and receives on the new sockets.
The server gets a socket for an incoming client connection by calling accept ().

int accept(int socket, struct sockaddr *clientAddress, unsigned int
*addressLength)

TCP Server

accept() dequeues the next connection on the queue for socket. If the queue is empty,
accept() blocks until a connection request arrives. When successful, accept() fills in
the sockaddr structure, pointed to by clientAddress, with the address of the client at the
other end of the connection,

addressLength specifies the maximum size of the clientAddress address structure and
contains the number of bytes actually used for the address upon return.

If successful, accept() returns a descriptor for a new socket that is connected to the
client. The socket sent as the first parameter to accept() is unchanged (not connected to
the client) and continues to listen for new connection requests. On failure, accept()
returns -1.

The server communicates with the client using send() and recv(); when ommunication
is complete, the connection is terminated with a call to close().

