
MultithreadingMultithreading

Cloud centric concept

Cloud centric concept

Arduino Ethernet Shield

Fog computing: Field agent

•Field Agent is the critical link required in an IIoT chain for
cloud-enabled analytics.
•provides a rugged, pre-configured solution for secure data
collection and conveyance from the machine. collection and conveyance from the machine.
•Connect to any industrial asset in order to collect data, analyze
trends and uncover insights that improve operations and asset
performance.
•To build out remote monitoring & diagnostics capabilities safely
and securely, utilizing encrypted channels that preserve data time
stamp, quality and fidelity.

Fog computing: Field agent

Small IoT network
Single server

Multitasking

•In computing, multitasking is a method by which multiple tasks, also
known as processes, share common processing resources such as a CPU.
•With a multitasking OS you can “simultaneously” run multiple
applications.
•Multitasking refers to the ability of the OS to quickly switch between
each computing task to give the impression the different applications are each computing task to give the impression the different applications are
executing multiple actions simultaneously.

Multithreading

• Multithreading extends the idea of multitasking into applications, so you can
subdivide specific operations within a single application into individual threads.
• Each of the threads can run in parallel.
•The OS divides processing time not only among different applications, but also
among each thread within an application.

Applications that take advantage of multithreading have numerous
benefits, including the following:
• More efficient CPU use
• Better system reliability
• Improved performance on multiprocessor computers

Nonblocking I/O

• The default behavior of a socket call is to block until the requested action is
completed.
• process with a blocked function is suspended by the operating system.
• solution to the problem of undesirable blocking is to change the behavior of the
socket so that all calls are nonblocking
• if a requested operation can be completed immediately, the call's return value • if a requested operation can be completed immediately, the call's return value
indicates success; otherwise it indicates failure (usually -1).
• change of the default blocking behavior:

int fcntl(int socket, int command, long argument)

Commands: F_GETFL and F_SETFL
Argument O_NONBLOCK.

Advantages of Threads

• The overhead for creating a thread is
significantly less than that for creating a
process

• Multitasking, i.e., one process serves multiple
clientsclients

• Switching between threads requires the OS
to do much less work than switching between
processes

Drawbacks of Threads

• Not as widely available as longer established
features

• Writing multithreaded programs require more
careful thoughtcareful thought

• More difficult to debug than single threaded
programs

• For single processor machines, creating several
threads in a program may not necessarily
produce an increase in performance

Thread Synchronization
Mechanisms

• Mutual exclusion (mutex):

• guard against multiple threads modifying the
same shared data simultaneously

• provides locking/unlocking critical code • provides locking/unlocking critical code
sections where shared data is modified

• each thread waits for the mutex to be
unlocked (by the thread who locked it) before
performing the code section

Basic Mutex Functions

int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t
*mutexattr);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

• a new data type named pthread_mutex_t is designated for
mutexes

• a mutex is like a key (to access the code section) that
is handed to only one thread at a time

• the attribute of a mutex can be controlled by using the
pthread_mutex_init() function

• the lock/unlock functions work in tandem

#include <pthread.h>

...

pthread_mutex_t my_mutex;

...

int main()

{

int tmp;

...

// initialize the mutex

tmp = pthread_mutex_init(&my_mutex, NULL);

...

// create threads

...

pthread_mutex_lock(&my_mutex);

do_something_private();do_something_private();

pthread_mutex_unlock(&my_mutex);

...

…

pthread_mutex_destroy(&my_mutex);

return 0;

}

• Whenever a thread reaches the lock/unlock block, it first
determines if the mutex is locked. If so, it waits until it is
unlocked. Otherwise, it takes the mutex, locks the succeeding
code, then frees the mutex and unlocks the code when it's done.

Semaphores

• Counting Semaphores:

• permit a limited number of threads to execute
a section of the code

• similar to mutexes• similar to mutexes

• should include the semaphore.h header file

• semaphore functions do not have pthread_

prefixes; instead, they have sem_ prefixes

Basic Semaphore Functions

• creating a semaphore:
int sem_init(sem_t *sem, int pshared, unsigned int value);

– initializes a semaphore object pointed to by sem

– pshared is a sharing option; a value of 0 means the
semaphore is local to the calling processsemaphore is local to the calling process

– gives an initial value value to the semaphore

• terminating a semaphore:
int sem_destroy(sem_t *sem);

– frees the resources allocated to the semaphore sem

– usually called after pthread_join()

– an error will occur if a semaphore is destroyed for
which a thread is waiting

Basic Semaphore Functions

• semaphore control:
int sem_post(sem_t *sem);

int sem_wait(sem_t *sem);

– sem_post atomically increases the value of a – sem_post atomically increases the value of a
semaphore by 1, i.e., when 2 threads call sem_post

simultaneously, the semaphore's value will also be
increased by 2 (there are 2 atoms calling)

– sem_wait atomically decreases the value of a
semaphore by 1; but always waits until the
semaphore has a non-zero value first

#include <pthread.h>

#include <semaphore.h>

...

void *thread_function(void *arg);

...

sem_t semaphore; // also a global variable just like mutexes

...

int main()

{

int tmp;

...

// initialize the semaphore

tmp = sem_init(&semaphore, 0, 0);

...

// create threads// create threads

pthread_create(&thread[i], NULL, thread_function, NULL);

...

while (still_has_something_to_do())

{

sem_post(&semaphore);

...

}

...

pthread_join(thread[i], NULL);

sem_destroy(&semaphore);

return 0;

}

void *thread_function(void *arg)

{

sem_wait(&semaphore);

perform_task_when_sem_open();

...

pthread_exit(NULL);

}

• the main thread increments the semaphore's
count value in the while loop

• the threads wait until the semaphore's count value • the threads wait until the semaphore's count value
is non-zero before performing
perform_task_when_sem_open() and further

• daughter thread activities stop only when
pthread_join() is called

Asynchronous I/O
Per-Client Process

Asynchronous I/O
Per-Client Thread

