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Preface

The Verilog Hardware Description Language (Verilog-HDL) has long been the most
popular language for describing complex digital hardware. It started life as a propri-
etary language but was donated by Cadence Design Systems to the design community
to serve as the basis of an open standard. That standard was formalized in 1995 by the
IEEE in standard 1364-1995. About that same time a group named Analog Verilog
International formed with the intent of proposing extensions to Verilog to support
analog and mixed-signal simulation. The first fruits of the labor of that group became
available in 1996 when the language definition of Verilog-A was released. Verilog-A
was not intended to work directly with Verilog-HDL. Rather it was a language with
Similar syntax and related semantics that was intended to model analog systems and
be compatible with SPICE-class circuit simulation engines. The first implementation
of Verilog-A soon followed: a version from Cadence that ran on their Spectre circuit
simulator.

As more implementations of Verilog-A became available, the group defining the ana-
log and mixed-signal extensions to Verilog continued their work, releasing the defini-
tion of Verilog-AMS in 2000. Verilog-AMS combines both Verilog-HDL and
Verilog-A, and adds additional mixed-signal constructs, providing a hardware
description language suitable for analog, digital, and mixed-signal systems. Again,
Cadence was first to release an implementation of this new language, in a product
named AMS Designer that combines their Verilog and Spectre simulation engines. At
the time this preface was written, all but the oldest commercial circuit simulators sup-
port Verilog-A, and each of the major ICCAD vendors offer mixed-signal simulators
that support Verilog-AMS. Verilog-A is extensively used in both device modeling for
circuit simulation and for behavioral modeling of analog systems and adoption of
Verilog-AMS is growing rapidly.

Verilog-AMS is continuing to evolve. Version 2.1 of the Verilog-AMS standard is
based on the IEEE Verilog 1364-1995 standard. It was released in January 2003. The
committee charged with the development of Verilog-AMS (www.eda.org/verilog-
ams) is currently working to improve and update the standard. Progress is currently
being made to update the basis of the standard to the latest version of Verilog-HDL,
IEEE 1364-2001. They are also working to integrate Verilog-AMS into SystemVer-



Preface

ilog. Finally, extensions are being added to support compact semiconductor models
and table models.

The intent of Verilog-AMS is to let designers of analog and mixed-signal systems and
circuits create and use models that describe their designs. Once a design is described
in Verilog-AMS, simulators are used to help designers better understand and verify
their designs. Verilog-AMS allows designs to be described at the same level as does
SPICE, but at the same time allows designs to also be described at higher more abstract
levels. This range is needed for the larger more complex mixed-signal designs that are
becoming commonplace today.

This book starts in Chapter 1 with a brief introduction to hardware description lan-
guages in general and Verilog-AMS in particular. Chapter 2 presents a formal top-
down design methodology. While not used extensively today, top-down design is
widely believed to be the only methodology available that can efficiently handle large
complex mixed-signal designs. This chapter presents a refined and proven top-down
methodology that overcomes many of the problems with existing top-down methodol-
ogies. Chapter 3 and Chapter 4 introduce the Verilog-A and Verilog-AMS languages.
The important concepts of the languages are presented using practical and easy to
understand examples. These chapters are intended to be read from beginning to end
and are designed to take engineers with a working knowledge of programming con-
cepts to the point where they are comfortable writing a wide range of Verilog-A and
Verilog-AMS models. However, they do not cover all the details of the languages.
Chapter 5 is a reference guide to the languages. It presents all of the details, but not in
a completely linear fashion. Though it can be read from beginning to end, it was writ-
ten with the expectation that most would use it as a reference, looking up just the
details they need when they need them. As such, it, as with the rest of the book, is
extensively cross referenced and indexed.

A word about the conventions used in this book. As new ideas and definitions are pre-
sented, a few keywords will be set in bold italics to make them easier to find and to
call your attention to them as important points. Code is set in a sans serif font with
keywords in bold and comments in italics. When in text, identifier names are set in
italics. Acronyms that are spoken as words rather than letters are set in small caps; for
example, SPICE. Besides the normal cross references found in the text, you will also
find references that appear like this: (5§2.3p157). These abbreviated references
include the chapter number, the section number, and finally the page number. Finally,
all models presented in this book have been verified with the simulators from
Cadence, either Spectre or AMS Designer as appropriate.

This book has two companion websites on which you can find updated information
about both this book and its subject matter. www.designers-guide.com contains infor-

x



Preface

mation about the book, including an errata sheet, the latest versions of the models
given in this book, articles that contain additional information about both modeling
and Verilog-AMS, and links to other sites that would be of interest. In addition, it also
provides a discussion forum where you can ask questions and have conversations with
other practicing design engineers. www.verilog-ams.com provides a burgeoning
library of high quality user contributed Verilog-A and Verilog-AMS models.

It is our intention to continually update and improve this book. As such, we would
like to ask for your help in the process. Please send your comments, suggestions,
experiences, feedback and reports of errors to either ken@designers-guide.com or
describe them at www.designers-guide.com/Forum.

Ken Kundert
Olaf Zinke

April 1, 2004

xi
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Introduction

1
Hardware description languages (HDLs) exist to describe hardware. In this they differ
from traditional programming languages, which generally exist to describe algo-
rithms. Programming languages such as C grew up with computers that were con-
structed with a Von Neumann architecture, meaning that they had a central processing
unit (CPU) connected to memory that held both instructions and data. The CPU also
controlled peripheral elements such as displays, keyboards, long-term storage, net-
working, etc. The fact that there was one CPU meant that programming languages
developed to describe procedures that consist of a sequence of operations performed
in a serial manner to the data in memory or on the peripheral elements. Contrast this
with typical hardware systems where there are many individual components that all
operate simultaneously. To properly describe hardware, one must be able to describe
both the behavior of the individual components as well as how they are intercon-
nected.

Hardware description languages have two primary applications: simulation and syn-
thesis. With simulation, one applies various stimuli to an executable model that is
described using the HDL in order to predict how it will respond. Simulation allows
you to understand how complex systems behave before you incur the time and
expense of implementing them. Synthesis is the process of actually implementing the
hardware. Here the assumption is that the HDL is used to describe the hardware at an
abstract level using component models that do not yet have a physical implementa-
tion, and that synthesis is the act of creating a new refined description with equivalent
behavior at the inputs and outputs that uses components that do have a physical imple-
mentation. The goal for HDLs used for simulation is expressiveness: they should be
able to describe a wide variety of behaviors easily. The goal for HDLs used for syn-
thesis is realizability: they should only allow those behaviors that can be converted
into an implementation to be described. As such, if a single language is used for both
simulation and synthesis, then generally synthesis only supports a relatively con-
strained subset of the language.

1 Hardware Description Languages
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Currently only digital finite-state machines are automatically synthesized. In this
case, the desired behavior is described at the register-transfer level (RTL) using a
well-defined subset of an HDL. Synthesis then converts the RTL description to an
optimized gate-level description. Implementations of the gates are available from a
library of standard cells.

Automated synthesis of analog or mixed-signal systems from a description of its
desired behavior has not progressed to the point where it is practical except in a few
very restricted cases. Furthermore, it is not clear that it will ever reach this point. For
this reason, automated synthesis is not discussed in this book. Rather, the focus is on
manual synthesis, the process undertaken by designers to convert high-level design
requirements to an implementation that meets those requirements. This process, also
known as the design process, is not one that traditionally uses hardware description
languages when it involves the design of analog or mixed-signal systems. However, as
mixed-signal systems become more complex there comes a time where it becomes
impractical to design them without using abstraction. It is this point where use of
HDLs becomes necessary as they are used to express the abstraction.

There are currently two HDLs available for describing mixed-signal hardware: Ver-
ilog-AMS and VHDL-AMS. As the names imply, they are extensions to the tradi-
tional Verilog and VHDL digital HDLs that are intended to support modeling of
analog and mixed-signal systems. Though these languages have different strengths
and weaknesses, they are intended to be used on the same types of circuits, in the
same ways, to produce the same results. As such, they are competitors. To a large
degree, the choice between them is currently determined by what language is being
used for the digital part of the system. However, in the future the simulators support-
ing the HDLs are expected to fully support both languages, allowing the various com-
ponents of a single system to be described with which either language is convenient.
At that point, one language may begin to dominate over the other. In the mean time,
both languages need supporting material that teaches designers how to use them. This
book is intended to fulfill that role for Verilog-AMS, with other books doing the same
for VHDL-AMS [15, 24].

Verilog-AMS is a modeling language for mixed-signal systems. It is primarily
designed to support simulation of mixed-signal systems by allowing the system to be
described to the simulator. However, mixed-signal systems represents a very broad
class of systems and must support a wide variety of situations. As such, Verilog-AMS
is a language that has a diverse range of capabilities.

2 The Verilog Family of Languages

2



2 The Verilog Family of Languages

The term “mixed-signal” suggests systems made up of parts that process digital sig-
nals and parts that process analog signals. As such, Verilog-AMS is a language that
supports the description of both digital and analog components. Verilog-AMS is the
merger and extension of two languages, Verilog-HDL and Verilog-A. These three lan-
guages currently make up the Verilog® family of languages.† Verilog-HDL allows the
description of digital components and Verilog-A allows the description of analog.
Verilog-AMS combines these two languages and adds additional capability to allow
the description of mixed-signal components. The term Verilog-AMS will be used
when referring to just the full AMS extensions and Verilog-A/MS when referring to
both Verilog-A and Verilog-AMS.

Digital signals are discrete-event signals with discrete values. In other words, they are
signals that are constant for a period of time, and then abruptly change to a new value.
With digital signals there are generally only a small number of possible signal values,
typically two, designated true and false, high and low, or zero and one. The Verilog-
HDL language was designed to handle such signals, and the systems that generate
them. This language has been available for many years. It is both well known and well
documented, and so will not be discussed in depth in this book. If you wish more
information on Verilog-HDL, try picking up one of the many books available that
focus on it exclusively [1, 5, 23, 27].

Analog signals are signals that vary continuously, meaning that the value of the signal
at any point may be any value from within a continuous range of values. There are
two ways in which this typically occurs, as shown in Figure 1. Either the signal is
piecewise constant versus time, meaning that it holds its value for a period of time
before jumping to a new value, or it is continuous versus time, meaning that its value
varies smoothly as a function of time. The former signals are referred to as being ana-
log discrete-event signals and the latter are continuous-time signals. The figure shows
the analog discrete-event signal jumping between values at regular intervals, but this
is not necessary. Both the value, and the time at which the jump-events occur can be
irregular.

Verilog-A is designed to allow modeling of systems that process continuous-time sig-
nals. While it can also handle systems that process the other types of signals, it is not
efficient for doing so. Verilog-A has been around for many years, though not nearly as
many as Verilog-HDL. The documentation available is either incomplete [8] or hard
to find [28], and so Verilog-A is presented in depth in Chapter 3.

Since Verilog-AMS combines Verilog-HDL and Verilog-A, as shown in Figure 2, it
inherits the ability to handle systems that process both digital and continuous-time

† Verilog is a registered trademark of Cadence Design Systems licensed to Accellera.
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Chapter 1 Introduction

analog signals. It also adds the ability to efficiently support systems that process ana-
log discrete-event signals. Verilog-AMS is the subject of Chapter 4,

Verilog-AMS is expected to have a big impact on the design of mixed-signal systems
because it provides a single language and a single simulator that is shared between
analog and digital designers, and between block designers and system designers. It
will be much easier to provide a single design flow that naturally supports analog,
digital and mixed-signal blocks, making it simpler for these designers to work
together.

Verilog-AMS makes it substantially more straight-forward to write behavioral models
for mixed-signal blocks, and brings strong event-driven capabilities to analog simula-
tion, allowing analog event-driven models to be written that perform with the speed
and capacity inherited from the digital engines. This is very important, because most
of the analog and mixed-signal models used in high-level simulations are naturally
written using event-driven constructs. For example, blocks like ADCs, DACs, PLLs,

converters, discrete-time filters (switched-capacitor), etc. are easily and very effi-
ciently modeled using the analog event-driven features of the AMS languages.

4



3 Mixed-Signal Simulators

Finally, it is important to recognize that Verilog-AMS is primarily used for verifica-
tion. Unlike the digital languages, the AMS languages will not be used for synthesis
in the foreseeable future because the only synthesis that is available for analog circuits
is very narrowly focused.

3 Mixed-Signal Simulators
Mixed-signal simulators, by their very nature, combine two different methods of sim-
ulation: event-driven simulation as found in logic simulators, and continuous-time
simulation as found in circuit simulators. As such, they are said to have two kernels; a
discrete-event kernel and a continuous-time kernel. These two kernels are an essential
feature of any mixed-signal simulator. Indeed, it is what separates mixed-signal simu-
lation from other types of simulation. Within these constraints, mixed-signal simula-
tors have changed considerably through the years.

Mixed-signal simulators first established themselves in the early 1990’s. At this time
there were two basic approaches, as shown in Figure 3. In one, a mixed-signal kernel
was added to an established circuit simulator. Analogy’s Saber and Georgia Tech’s
XSPICE are examples. These simulators offered relatively simple and low-level mech-
anisms to support event-driven simulation. They were quite different from, and
incompatible with, the standard logic simulators of the day, such as Verilog-XL. As a
result, while useful, these capabilities never gained wide acceptance. This lack of
acceptance was addressed in the other approach, which simply glued together an
established circuit simulator, generally some form of SPICE, and an established logic
simulator, usually Verilog-XL. An example of this type of simulator is Spectre/Ver-
ilog-XL from Cadence. This approach addressed the lack of acceptance issue, but cre-
ated ease-of-use and performance problems. The ease-of-use problems stem from the
complexity of getting two simulators with very different use models to operate
together. Generally, some form of mixed-signal design environment is required to
manage the process of splitting the netlist between SPICE and Verilog, inserting the
interface components, setting up and running the simulation, and accessing and dis-
playing the results. Even with the environment, glued simulators developed a reputa-
tion of being difficult to use. The performance issues stem from the distant separation
between the analog and digital parts of the circuit, and the overhead in the communi-
cation between the two simulators.

The AMS languages, Verilog-AMS and VHDL-AMS, address many of these issues.
They provide a single standard input language that both supports mixed-signal
descriptions, and is based on the standard languages used by logic simulators. As
such, they provide the advantages of both types of early mixed-signal simulators,

5



Chapter 1 Introduction

without the disadvantages. However, even with the AMS simulators, there is variety
in the way they are constructed, as shown in Figure 4.

In an interesting twist, the integrated approach merges two established simulators
whereas the glued approach adds an event-driven kernel to an established circuit sim-
ulator. The reason for this reversal stems from the need for both compatibility and
performance when simulating modern mixed-signal systems-on-chip (MS-SOC)

6



3 Mixed-Signal Simulators

designs. The reason compatibility is critical is that generally large MS-SOCs are
assembled from pieces that are designed with the help of the component simulators.
The digital blocks would have been simulated with an established logic simulator and
the analog blocks with an established circuit simulator. The various descriptions of
the blocks must be reusable in the mixed-signal simulator without modification.
Hence, the analog kernel must be completely compatible with the established circuit
simulator, and the digital kernel must be completely compatible with the established
logic simulator. In addition, because of the size of the designs, both kernels must pro-
vide performance that is comparable with the best engines on the market.

Both requirements point to the need to bolt together an established circuit simulator
with an established logic simulator, and all commercial offerings do just that. How-
ever, it takes a great deal of effort to tightly merge an established circuit simulator and
an established logic simulator, which is what is required when providing an integrated
AMS simulator. Both the circuit and the logic simulator must be extensively modi-
fied, which requires a substantial commitment from both simulator development
teams. Cadence’s AMS Designer is an example of an integrated AMS simulator; it
tightly merges the Spectre circuit simulator with the NC-SIM logic simulator.

The heavy investment needed to build an integrated AMS simulator has led to the
development of glued AMS simulators. Here, AMS extensions are added to an estab-
lished circuit simulator to provide the needed discrete-event kernel with tight integra-
tion to the continuous-time kernel, but extensions provide neither the performance of
an established logic simulator, nor compatibility with such a simulator. As such, an
established logic simulator must also be added to the mix, but in this case it is added
as a separate, loosely integrated executable. In fact, the integration between the AMS
simulator and the established logic simulator is virtually the same as the integration in
the old glued mixed-signal simulators; with many of the same issues and with the
added complication of having a redundant logic simulation capability.

Mentor’s ADVance MS is an example of a glued AMS simulator. In another interest-
ing twist, Mentor’s marketing literature has described ADVance MS as a “single ker-
nel” simulator. This is clearly incorrect, at least when using the word “kernel” in the
way it is commonly used in mixed-signal simulation. An AMS simulator needs at
least two kernels.

In an application of the old adage: “if you can’t fix it, feature it,” they are trying to
suggest that by building the AMS extensions into their circuit simulator they have an
inherently tighter coupling between the continuous-time and discrete-event kernels.
But, in fact, there is no justification for such a claim. They are also trying to take
attention off the fact that they have only a distant integration with their established
ModelSim logic simulator. In a very real sense, they have a three kernel rather than a

7



Chapter 1 Introduction

single kernel simulator, and two of the kernels are largely redundant. In the long run,
expect Mentor to abandon this architecture and move to a more integrated architec-
ture.

There are five main reasons why engineers use Verilog-AMS:

4 Applications of Verilog-AMS

4.1 Component Modeling
A traditional circuit simulator such as SPICE provides a limited set of built-in models,
those needed to model the components commonly available on integrated circuits, and
provide relatively limited ability to add new models. They generally offer end users
only the ability to add components described by a small number of simple formulas.
These models are quite limited. They are also interpreted and so execute relatively
slowly. As a result, this way of adding models is not suitable for complicated models
or those that are heavily used.

In contrast, Verilog-A/MS provides a very wide variety of features and can be used to
efficiently describe a broad range of models. Examples include ...

1.

2.

3.

4.

5.

6.

Basic components such as resistors, capacitors, inductors, etc.

Semiconductor components such as diodes, BJTs, MOSFETs, varactors, etc. Pub-
lic domain Verilog-A models exist for virtually all of the commonly used compact
models such as the Gummel-Poon, VBIC, and Mextram BJT models and the
MOS3, BSIM3 & 4, and EKV MOS models [29].

Functional blocks such as data converters, de/modulators, samplers, filters, etc.

Multi-disciplinary components such as sensors, actuators, transducers, etc.

Logic components and blocks such as gates, latches, registers, etc.

Test bench components such as sources and monitors.

1.

2.

3.

4.

5.

to model components,

to create test benches,

to accelerate simulation,

to verify mixed-signal systems, and

to support the top-down design process.

It is important to understand each, as each represents an important application of Ver-
ilog-A/MS. Each will be briefly discussed with top-down design covered in detail in
Chapter 2.

8
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The term ‘compact model’ refers to the lumped models used by circuit simulators.
More specifically, it is generally used to refer to the models of semiconductor compo-
nents commonly incorporated into SPICE. As of the year this book was written, 2004,
these models are largely implemented in C code that is compiled into the simulator.
These models can be quite complex and are difficult to create and maintain. In addi-
tion, as each simulator has its own compiled model interface, the models are not por-
table between simulators. These issues create numerous problems for the people that
develop the compact models, the people that develop the simulators, and the people
that use and support the simulators [17]. As a result, there is increasing interest in
instead writing and distributing the models in Verilog-A. Doing so addresses most, if
not all, of the existing problems. Verilog-A is a standard language, so models would
be portable. If the models were made available in source form, end users could correct
any flaws in the model or enhance them as needed. Finally, models written in Verilog-
A tend to be much smaller and more easily maintained than models written in C. Usu-
ally more than a 10× reduction in the amount of source code needed to represent the
model is easily achievable.

To support the development of compact models in Verilog-A, extensions to the lan-
guage are currently being developed. It is hoped that a future edition of this book will
describe those extensions.

Examples of all of these can be found in the library of Verilog-A/MS models at
www.verilog-ams.com.

The ability to add models to a circuit simulator such as SPICE dramatically increases it
range, and makes it immensely more powerful. The most obvious benefit is that it can
simulate a broader variety of systems. The ability to add models of laser and photo
diodes makes it suitable for electro-optical systems. The ability to add magnetic and
power semiconductor models makes it suitable for power systems. The list is endless.
Mechanical, thermal, acoustic, fluidic, etc. models are all possible. These capabilities
are being used to model Micro-Electro-Mechanical Systems (MEMS), where multi-
disciplinary components are constructed on the same silicon die. Even new electrical
models, such as varactors, PIN diodes, etc. can be added to allow simulation of a
wider variety of purely electrical systems.

In addition, as discussed in the remainder of this chapter, Verilog-A/MS can be used
to add models of high-level blocks, allowing larger systems to be simulated; it allows
models of digital components to be added, allowing simulation of mixed-signal sys-
tems; and it allows modeling of complicated test benches; allowing for more sophisti-
cated tests.

4.1.1  Compact Models in Verilog-A

9
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tion. At a minimum it consists of one or more sources, but could be quite complicated.
For example, as shown in the figure, when testing a digital-to-analog converter
(DAC), one might include an ideal analog-to-digital converter (ADC) in the test bench
as a way of generating the digital patterns used to drive the DAC. Conversely, when
testing an ADC, one might use an ideal DAC to convert the output back to an analog
signal that can be easily compared to the input, or further processed. Such represents a
simple example of what could be done. In many cases it might be desirable for the test
bench to be a high level model of the system in which the circuit under test is
expected to operate. This is common when the interaction between the circuit and its
environment is complex and employs sophisticated feedback; as might be the case
when the circuit under test is adjustable and its test bench is expected to perform a
calibration step before going on to measure the circuit’s performance.

In these cases, it is natural to describe either the entire test bench, or the components
that make up the test bench, with Verilog-A/MS. This is often relatively easy to do
because the test bench is constructed with idealized components, so no time need be
spent on trying to model non-idealities. This is certainly true with the test bench for
the DAC, where the ADC used would be perfectly linear, and so no time is expended
trying to match the nonlinearity present in a real ADC.

4.2  Test Benches

4.3 Simulation Acceleration
With designs becoming larger and their behavior becoming more complex, it is taking
longer and longer to verify them with simulation. This is particularly true if the design
is described at the transistor level. Often, there are particular critical portions of the
design that are of the most concern. In this case, the simulation time can be reduced if
the non-critical portions of the circuit are replaced with behavioral models. A behav-
ioral model for a block will simulate much faster than a transistor-level model of the
same block. If enough of the circuit is converted to behavioral-level, the resulting sim-
ulations can be much faster (2§4.3p27). For example, a complex PRML read channel
required more than a month to complete simulations when represented completely at
the transistor level, and over night when all blocks except the one of primary concern
were represented by behavioral models. In the extreme, the idea of using Verilog-A/

The term ‘test bench’ is used to refer to the cir-
cuitry that is added to the circuit under test so as to
provide it with an environment in which it can
properly operate. The test bench acts as a replace-
ment for the circuitry that the circuit under test
will be connected to when it is in normal opera-
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4 Applications of Verilog-AMS

Top-down design is a design methodology that is useful when designing large com-
plex systems. The basic premise is to design and verify the system at an abstract or
‘block diagram’ level before starting the detailed design of the individual blocks. Top-
down design would be used in lieu of the more traditional approach referred to as bot-
tom-up design.

In bottom-up design, one fully designs the individual blocks before focusing on the
design of the block diagram of the system. Bottom-up design generally requires that
the individual blocks be over designed so that when connected together to form the
system there is enough margin to overcome unexpected problems. The big risk being
that the required system performance might not be achievable with the blocks as
designed, meaning that one or more blocks would have to be re-designed.

With top-down design, the individual block performance needed to meet the overall
system performance requirements is carefully studied and understood before the
blocks are developed. This reduces the need for over design in the individual blocks,
but at the risk that the anticipated performance for one or more blocks is unachiev-
able, which would require that the system design be revisited.

Clearly, to reduce the expense and time required for rework, there must be extensive
communication between the system and block level designers. This is where Verilog-
AMS becomes useful. Verilog-AMS enables a much richer form of communication;
one where models can be exchanged in addition to words, diagrams, and specifica-
tions. It is often said that a picture is worth a thousand words. In the same way, a
model is even more powerful than a picture because it is a working example of what is
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MS to accelerate simulation is closely related to the idea of using Verilog-A/MS to
model test benches, as the portion of the circuit represented by behavioral models
effectively acts as a test bench for the portion represented at the transistor level.

4.4 Mixed-Signal Design
When designing mixed-signal circuits Verilog-AMS is very useful as it allows both
digital and analog circuits to be described in a way that is most suitable for each type
of circuit. With digital circuits, either gate- or behavioral-level Verilog-HDL is used,
and with analog circuits, either transistor- or behavioral-level Verilog-A/MS is used.
The fact that Verilog-AMS is a superset of Verilog-HDL means that the representa-
tions for the two parts of the circuit can be easily combined. But it also means that
both analog and digital designers can operate with languages that are familiar and
comfortable for them, and yet they can still work together.

4.5 Top-Down Design
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expected. With a model, one can run scenarios to clarify meaning and intent. Further-
more, representative models can be used as proxies for the implemented blocks,
meaning that the system designers can try out their designs with models from the
block designers, or block designers can try out their designs in a model of the larger
system. In either case, communication is improved and the frequency and severity of
errors is reduced along with the need for rework.

The first four uses of Verilog-A/MS are relatively straight-forward extensions of
existing design methodologies, and as such, can be employed relatively easily. In
some sense, the main challenge is learning to use the language. The language is pre-
sented in Chapters 3-5. However, the last use, top-down design, represents a funda-
mental change in the way that design is done. As such, its adoption will be much more
difficult and slow. The next chapter discusses the need for top-down design and how it
might be done.

What’s Next

12
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2
The mixed-signal design process has changed relatively little over the past two
decades, and in comparison to the digital design process, is slow, labor intensive, and
error prone. While digital designers have improved their design methodology and
adopted design automation, analog and mixed-signal designers by and large have not.

There are two reasons why digital designers are far ahead of analog designers in
improving their design processes. First, digital designers confronted the need to
design very large and complex systems much earlier than analog designers. Consider
that large digital chips today consist of tens of millions of transistors, while complex
analog chips contain only tens of thousands of devices. Second, the digital design
problem is much more amenable to automation than the analog problem.

Consider a digital design. In most cases digital systems are implemented as finite-
state machines (FSM) and constructed from standard cell libraries. Using a FSM for-
mulation acts to unify and homogenize digital design and gives it a well-understood
mathematical foundation. This foundation was thoroughly explored in the late ’80s
resulting in the commercial logic synthesis tools of the early ’90s. These tools take a
register-transfer level description (RTL), a relatively high-level description of a digital
system that is created by designers and can be verified with the help of logic simula-
tors, to produce an optimized gate-level description of the system. This transforma-
tion is possible because digital systems are constructed from a limited set of relatively
simple and well-behaved building blocks. The building blocks of digital systems are
gates and registers. The blocks, generally referred to as cells, all share a common I/O
model and so are easily interconnected, are derived from a relatively small number of
cell types that have very simple and easily described behavior, are easily parameter-
ized in terms of the number of inputs and outputs, and have a simple and easily
adjusted performance trade-off that involves only speed and power. Logic synthesiz-
ers operate by creating a complete mathematical description upon which it performs
transformations in order to create an optimal design in terms of speed, power, and

1 Mixed-Signal Design Productivity
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area. This is a two step process. First, equivalence transformations are applied to the
mathematical descriptions in order to reduce the total number of gates, which mini-
mizes the area, and the depth of the logic, which roughly maximizes the speed. This is
possible because each block has a simple logical description and a common interface
model. Then, the drive ability of each gate is adjusted to provide the lowest power
while still meeting speed requirements. This is possible because this speed-power
trade-off is easily made in each gate.

Now consider analog design. Analog design has no equivalent to finite-state
machines, and so has no unified formulation and no common mathematical founda-
tion. It also has no universal equivalence transformations that allow the topology of a
circuit to be easily modified without risk of breaking the circuit. These problems pre-
vent a topological mapping from a behavioral description to hardware. Even if one
were mathematically possible, the lack of a common I/O model for analog blocks
would prevent the topological modifications that are needed for either mapping or
topology optimization.

It might be possible to try to enforce a common I/O model for analog circuits, but
doing so would be very expensive. For example, one might simply specify that the
signals at the inputs and outputs of analog blocks center around a particular value,
have the same maximum swing, and that outputs have zero output impedance and
inputs have zero input admittance. The problem is that doing so would necessitate
extra circuitry in each analog block that is there simply to assure compliance to the I/
O model. That circuitry reduces the overall performance of the circuit by increasing
power dissipation, increasing noise, decreasing bandwidth, etc. This differs from the
digital world where the common I/O model was achieved naturally and without sig-
nificant cost. In addition, it is not possible to achieve these ideals at high frequencies.
Instead, some common reference impedance would have to be specified, such as the

used at the system level, but driving such loads greatly increases power dissipa-
tion.

Finally, there is no simple way to trade-off the various performance metrics that are
important with analog blocks, which makes it difficult to perform a parametric opti-
mization. Sensitivity-based local optimizations can be used, but the improvement pro-
vided by these approaches is usually small. Monte Carlo-based global optimizers
offer better improvements, but require substantially more in the way of computer
resources.

The end result is that analog designers have no equivalent to RTL, a relatively high-
level language in which they can describe their design and from which they can syn-
thesize an implementation that is guaranteed to be functionally correct and have near
optimal performance. As such they must transform their designs from concept to

14



1 Mixed-Signal Design Productivity

Clearly a change is needed. It is interesting to note that when digital designers were
trying to design systems of a size comparable to today’s mixed-signal designs, their
design process was not that different from what analog designers are using today. But
it was at that point that they began to transition to a more structured and more auto-
mated design methodology. For analog designers, substantial automation may not be
in the cards in the near future, but the need to transition to a more structured design
methodology that is both more efficient and that allows designers to handle the grow-
ing size of analog and mixed-signal circuits is clearly needed.
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implementation by hand, and so the design process is naturally much slower and more
error prone that the design process for digital circuits.

The outlook for providing the equivalent to logic synthesis for analog designers is
bleak. However, things cannot continue as they are; the current situation is becoming
untenable. While a complex digital chip can be designed correctly on the first try in a
few months, designing a complex analog chip can require 3-4 re-spins and up to a
year and a half to get right. This is problematic for many reasons:

1.

2.

3.

4.

5.

6.

7.

The tremendous mismatch in schedule and risk between the analog and digital
portions of a mixed-signal design makes it difficult to justify combining analog
and digital on the same chip.

The high risk makes planning difficult. It is hard to predict when product will be
available, and when valuable analog designers will free up.

A long time-to-market makes it tough to react to changes in market trends and
competitive pressures.

Analog and mixed-signal product development demands large investments of time
and money. This makes it difficult to justify developing new analog products,
especially in tough economic times.

Analog and mixed-signal designers are scarce and hard to recruit. Compounding
this problem is the inherently low-level of productivity of the current mixed-signal
design process, which makes it difficult for small design houses that are not
focused on analog to field an analog design capability.

Some mixed-signal designs are becoming so large that, with the low productivity
of the analog design process, a team of analog designers that is large enough to
take on the project and complete it in a timely manner simply cannot be assem-
bled.

To compensate for semiconductor processes that are increasingly unfriendly to
analog designs results in an increasing use of auto calibration and adaptive filter-
ing. This substantially increases the complexity of both the design and the verifi-
cation of the design, which magnifies the problems already mentioned.
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The availability of logic synthesis tools was not the only enabling factor for digital
designers to move to more efficient design methodologies. By moving to FSM and
RTL, digital designers also gave up considerable performance in terms of speed and
power. They made this sacrifice to be able to design the larger and more complex sys-
tems quickly. This sacrifice was a critically important enabling factor. Analog and
mixed-signal designers have not demonstrated the willingness to make a similar sacri-
fice. In those cases where performance is not critical, the tendency is to instead con-
vert the circuit to a digital implementation in order to gain flexibility. In the remaining
cases sacrificing performance is not an option; however it is also not clear that such a
sacrifice is needed. Analog designers do not have the equivalent of logic synthesis, so
they will continue to use custom design methodologies. While moving to IP (intellec-
tual property) reuse may entail some sacrifice in overall system performance, chang-
ing to a top-down design methodology does not inherently imply lower system
performance. In fact, the opposite is usually the case, using top-down design results in
higher performance. Rather, the sacrifice that is demanded of analog and mixed-sig-
nal designers is that they must learn new skills, such as behavioral modeling, and they
must be more disciplined in the way they design.

It is unlikely that analog and mixed-signal designers will ever be allowed on a large
scale to trade any substantial amount of performance and power for a reduction in
design time. Rather, in those cases where the performance and power requirements
are not demanding, a digital implementation is usually preferred.

At the Design Automation Conference in 1998, Ron Collett of Collett International
presented findings from a 1997 productivity study in which his firm analyzed 21 chip
designs from 14 leading semiconductor firms. The study revealed a productivity gap
of 14× between the most and least productive design teams. The study also revealed
that developing analog and mixed-signal circuitry requires three to seven times more
effort per transistor than designing digital control logic, though this factor was nor-
malized out of the 14× ratio.

The reason for the poor productivity of those at the bottom end of the scale are
increasingly complex designs combined with a continued preference for a bottom-up
design methodology and the occurrence of verification late in the design cycle, which
leads to errors and re-spins. There’s a huge disparity in productivity between those
mixed-signal designers who have transitioned to an effective “top-down” design
methodology, and those who practice “bottom-up” design and rely solely on SPICE.

2 Traditional Approaches to Mixed-Signal Design
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The traditional approach to design is referred to as bottom-up design. In it, the design
process starts with the design of the individual blocks, which are then combined to
form the system. The design of the blocks starts with a set of specifications and ends
with a transistor level implementation. Each block is verified as a stand-alone unit
against specifications and not in the context of the overall system. Once verified indi-
vidually, the blocks are then combined and verified together, but at this point the
entire system is represented at the transistor level.

While the bottom-up design style continues to be effective for small designs, large
designs expose several important problems in this approach.

2.1 Bottom-Up Design

1.

2.

3.

4.

5.

Once the blocks are combined, simulation takes a long time and verification
becomes difficult and perhaps impossible. The amount of verification must be
reduced to meet time and compute constraints. Inadequate verification may cause
projects to be delayed because of the need for extra silicon prototypes.

For complex designs, the greatest impact on the performance, cost and functional-
ity is typically found at the architectural level. With a bottom-up design style, little
if any architectural exploration is performed and so these types of improvements
are often missed.

Any errors or problems found when assembling the system are expensive to fix
because they involve redesign of the blocks.

Communication between designers is critical, yet an informal and error prone
approach to communication is employed. In order to assure the whole design
works properly when the blocks are combined, the designers must be in close
proximity and must communicate often. With the limited ability to verify the sys-
tem, any failure in communication could result in the need for additional silicon
prototypes.

Several important and expensive steps in the bottom-up design process must be
performed serially, which stretches the time required to complete the design.
Examples include system-level verification and test development.

The number of designers that can be used effectively in a bottom-up design process is
limited by the need for intensive communication between the designers and the inher-
ently serial nature of several of the steps. The communication requirements also tend
to require that designers be co-located.

2.2 Moving to Top-Down Design
In order to address these challenges, many design teams are either looking to, or else
have already implemented, a top-down design methodology [4, 18]. In a primitive top-
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down approach [3], the architecture of the chip is defined as a block diagram and sim-
ulated and optimized using a system simulator such as Matlab or Simulink. From the
high-level simulation, requirements for the individual circuit blocks are derived. Cir-
cuits are then designed individually to meet these specifications. Finally, the entire
chip is laid out and verified against the original requirements.

This represents the widely held view of what top-down design is. And while this is a
step towards top-down design, it only addresses one of the issues with bottom-up
design (point 2 in Section 2.1). In essence, these design groups have not fundamen-
tally changed their design process; they have simply added an architectural explora-
tion step to the front. The flaw in this approach is that there is an important
discontinuity in the design flow that results because the representation used during the
architectural exploration phase is incompatible with the representation used during
implementation. This discontinuity creates two serious problems. First, it leaves the
block designers without an efficient way of assuring that the blocks all work together
as expected. One could assemble transistor-level representations of the blocks and run
simulations, but the simulations are too slow to be effective. The first time the blocks
can be thoroughly tested together is first silicon, and at that point any errors found
trigger a re-spin. Second, the discontinuity makes communication more difficult and
ad hoc and so acts to separate the system designers from the circuit designers, and the
circuit designers from each other. Without a reliable communication channel, design-
ers resort to using verbal or written specifications, which are often incomplete, poorly
communicated, and forgotten half way through the project. It is the poor communica-
tion process that creates many of the errors that force re-spins, and the separation that
allows the errors to hide until the design is available as silicon.

To overcome these issues, one needs a design methodology that

1.

2.

3.

4.

5.

6.

7.

Improves communication between designers (between system and block design-
ers, between block designers, and between current designers and future designers
(to support reuse)).

Eliminates the discontinuity that acts to hide errors and separate the system
designers from the block designers.

Improves verification so that it finds the errors that cause re-spins, and finds them
earlier so that they are less disruptive and easier to fix.

Improves designer effectiveness.

Reorganizes the design tasks, making them more parallel and eliminating long
serial dependencies.

Reduces the need for extensive transistor-level final verification.

Eliminates re-spins!
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RF designers typically use this type of primitive top-down design approach. They
begin with the system design. Typically using a spreadsheet, the gain, noise figure and
distortion budget is explored; and with the help of guides like the Friis equation, is
distributed amongst the various blocks of the receiver. The design is then iterated until
the performance of the system as predicted by the spreadsheet is met and the perfor-
mance requirements on the blocks are reasonable. At this point, the design proceeds
bottom-up relying solely on transistor-level design. Eventually, the spreadsheet is
updated with the actual values coming from the transistor-level simulation, and if the
system performance is not satisfactory, the process repeats. The problem is that even
when using the updated results, the performance predicted by the spreadsheet will not
match the results achieved in silicon. This happens because of miscommunications,
either in the meaning or the actual values of the block specification, and because the
system-level description is crude and does not account for things like loading effects.
When designing non-integrated receivers, this is not as problematic because all the
stages are generally designed for power matching and the voltage supply is reason-
ably high                      In CMOS design the voltage supply is low (1.2 V in a
process) and the blocks do not share matched impedances. The result, of course, is
that multiple silicon iterations are needed to achieve the required system performance
levels.

A well designed top-down design process methodically proceeds from architecture- to
transistor-level design. Each level is fully designed before proceeding to the next and
each level is fully leveraged in the design of the next. Doing so acts to partition the
design into smaller, well defined blocks, and so allows more designers to work
together productively. This tends to reduce the total time required to complete the
design. A top-down design process also formalizes and improves communications
between designers. This reduces the number of flaws that creep into a design because
of miscommunication. The formal nature of the communication also allows designers
to be located at different sites and still be effective.

Following a top-down design methodology also reduces the impact of changes that
come late in the design cycle. If, for whatever reason, the circuit needs to be partially
redesigned, the infrastructure put in place as part of the methodology allows the
change to be made quickly. The models can be updated and the impact on the rest of
the system can be quickly evaluated. The simulation plan and the infrastructure for
mixed-level simulations is already available and can be quickly applied to verify any
changes.
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In the primitive top-down design process commonly used today, the system designers
use a different design representation than the circuit designers. For example, the sys-
tem designers might use a spreadsheet, Matlab, Simulink, SPW, or System View while
the circuit designers would use Verilog, VHDL, or SPICE. This causes a myriad of
problems, perhaps the most important being that they are using different tools to
explore the design and that make it difficult for them to share what they learn during
the design process. As mentioned before, this leads to communication problems and
eventually to design errors that are generally not caught until first silicon.

If instead a common simulatable design representation is used, such as Verilog-AMS,
then the system engineers can build an architectural-level description of the design
constructed from behavioral models of each of the blocks that can be evaluated by
each of the circuit designers. In effect, the circuit designers start by receiving an exe-
cutable example of what they are expected to design. If they have trouble meeting
their assigned specifications, they can go back to the system engineers with simula-
tions that show how the system is affected by the shortfall. Since both types of engi-
neers are working in a familiar environment, communication is enhanced and
potential resolutions can be explored together. The ready availability of behavioral
models of the blocks that act as executable examples greatly reduces the need for
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An effective top-down design process follows a set of basic principles.

1.

2.

3.

4.

5.

A shared design representation is used for the entire length of the project that
allows the design to be simulated by all members of the design team and in which
all types of descriptions (behavioral, circuit, layout) can be co-simulated.

During the design process each change to the design is verified in the context of
the entire previously verified design as dictated by the verification plan.

A design process that includes careful verification planning where risks are identi-
fied up-front and simulation and modeling plans are developed that act to mitigate
the risks.

A design process that involves multiple passes, starting with high level abstrac-
tions and refining as the detail becomes available. In effect, running through the
entire process very quickly at the beginning with rough estimates and guesses to
get a better understanding and better estimates, and then refining the design as the
process progresses.

To the degree possible, specifications and plans should be manifested as execut-
able models and scripts, things that are used in the design process on a daily basis,
rather than as written documents.

3.1 A Shared Design Representation
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In a primitive top-down design methodology, the architectural description of the sys-
tem is usually thoroughly verified using simulation. However, the design is then re-
created at the circuit level during the implementation phase and this version of the
design is never checked against the original architectural description. This discontinu-
ity is where many of the errors creep in that are not found until first silicon. In effect,
the verification that was done in the architectural phase is not leveraged during the
implementation phase. Verification in the implementation phase is generally not as
effective because it is slow and so cannot be as comprehensive. In addition, the test
benches used during the architectural design phase often cannot be reused during the
implementation phase, and are generally difficult to re-create.

It is important instead to use a common simulatable representation for the design that
allows both the system-level and circuit-level descriptions of the various blocks to be
co-simulated, as is possible with Verilog-AMS. This capability is referred to as
mixed-level simulation [14,22]. With it, individual blocks or small sets of individual
blocks can be represented at the transistor- or even layout-level and be co-simulated
with the rest of the system, which is described with high-level behavioral models.
While these simulations are often considerably slower than simulations where every
block is described at the high-level, they are also considerably faster than simulations
where every block is described at the transistor level. And they allow the individual
blocks to be verified in a known-good representation of the entire system. In effect,
the system simulations are leveraged to provide an extensively verified test bench for
the individual blocks.

Consider a simple example. It is not uncommon for a system to fail at first silicon
because of a miscommunication over the polarity of a digital signal, such as a clock,
enable, or reset line. Such errors cannot survive in the high-level description of the
system because of the extensive testing that occurs at this level. They also cannot sur-
vive during mixed-level simulation because the individual block, where the error is
presumed to be, is co-simulated with shared models for which the polarity of the sig-
nal has already been verified. They can, however, survive in either a bottom-up or
primitive top-down design process because the test benches for the individual blocks
are created by the corresponding block designers. Any misunderstanding of the
required interface for the block will be reflected both in the implementation of the
block and in its test bench, and so will not be caught until first silicon.

onerous specifications that describe the desired behavior of each block, specifications
that are often poorly written and that frequently go unread.

3.2 Every Change is Verified
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Generally users of bottom-up or primitive top-down design methodologies find that
the errors detected at first silicon are a result of rather mundane mistakes that occur at
the interfaces between the various blocks. These errors are generally caused by com-
munication breakdowns and would have been easy to find with simulation had anyone
thought to look for them. The fact is that the focus of verification efforts in these
methodologies is on guaranteeing the performance of the individual blocks, and not
on identifying the problems that result when the blocks are interconnected. Some
effort is generally spent on trying to verify the system as a whole, but it comes late in
the process when the system is represented largely at the transistor level. At this stage,
the simulations are quite slow and the amount of functionality that can be verified is
very limited.

In a well-conceived top-down design process a verification planning step occurs that
focuses on anticipating and preventing the problems that occur when assembling the
blocks into a system. In order to be effective, it must move the verification to as early
in the design process as possible and occur with as much of the system described at a
high level as possible. Moving the chip-level verification up in the design process
means that errors are caught sooner, and so are easier and less expensive to fix. Using
high-level models means that the simulations run faster, and so can be substantially
more comprehensive.

In a zealousness to accelerate the simulation, care must be taken to assure that enough
of the system is at the right level to assure that the desired verification is actually
occurring. Thus, the verification plans must include both simulation plans, that
describe how the verification is to occur, and modeling plans, that indicate which
models need to be available to support the verification plan and which effects should
be included in the models. The modeling plan is very important. Without it behavioral
models may be written that do not include the desired effect while including many
effects that are unrelated to what is being verified. If they do not model the desired
effect, then the verification will not be effective, if they model too many effects, then
the verification runs unnecessarily slow and the models become more difficult and
expensive to develop. The goal with the modeling plan is to identify a collection of
simple models along with directions as to when they should be used, rather that trying
to develop one complex model that is used in all cases.

An important benefit of the verification plan is that it allows the design team to react
to late changes in the design requirements with confidence. When a change to the
requirements occurs, it is possible to quickly revisit the verification plan, modify the
design, update the models, and then apply it to the amended design to assure it satis-
fies the new requirements. Since it spells out all the simulations that need to occur to
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To reduce the risk of design iterations that result from unanticipated problems, it is
important to take steps to expose potential problems early by working completely
through an abstract representation of the design, using estimates as needed. As the
design progresses and more detailed and reliable information becomes available, the
abstract representation is successively refined. This process begins by developing a
top-level behavioral model of the system, which is refined until it is believed to be an
accurate estimate of the desired architecture. At this point, there should be reasonable
understanding as to how the blocks will be implemented, allowing size estimates to be
made for the blocks, which leads to an initial floorplan. Top-level routing is then pos-
sible, which leads to parasitic estimation, with the effect of the parasitics being back
annotated to the top-level. Simulations can then expose potential performance prob-
lems as a result of the layout, before the blocks are available. This may result in early
changes to the architecture, changes in block specifications, or perhaps just an
improvement of the verification plan. However, these changes occur early in the
design process, which greatly reduces the amount of redesign needed.

As the blocks are implemented and more information becomes available, the process
is continually repeated while updating and refining the design.
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verify the design, there is little chance that a change needed by the new requirements
that happens to break some other part of the design will go unnoticed.

Another important benefit of the up-front planning process used when developing the
verification plan is that it tends to sensitize the design team to possible problem areas,
with the result that those areas are less likely to become problems.

3.4  Multiple Passes

3.5  Executable Specifications and Plans
When a design fails because of miscommunications between engineers, it is a natural
reaction to insist that in future designs, formal specifications and plans be written in
advance as a way of avoiding such problems. In practice, this does not work as well as
generally hoped. The act of writing things down is beneficial as it gets the engineers
thinking more deeply about their designs up-front, and so they develop a better under-
standing of what is expected and what could go wrong. However, as for the written
specifications and plans themselves, they can take a long time to write, are usually not
very well written or maintained, and are often not read by the other engineers. The
fact is, the documents themselves are rarely effective at improving the communica-
tions between the engineers. Rather it is the better understanding that comes from
writing them that acts to improve communications.



Chapter 2 Top-Down Design

If instead, specifications and plans took the form of executable models and scripts that
would be used and valued on a daily basis, perhaps with a small amount of accompa-
nying documentation, then they would be naturally well written, well used, and well
maintained. The models and scripts are also inherently very specific, which eliminates
the ambiguity that occurs in written documents and that can result in misunderstand-
ings that lead to re-spins. These models and scripts should be maintained with the
design data and shared between all designers. This avoids another of the problem with
written specifications; the situation where one engineer is unaware that another has
updated a specification.

Use of executable specifications and plans in the form of models and scripts both sub-
stantially improves the design process for the initial version of the chip, as well as
greatly easing reuse of either the design as a whole, or the blocks used in constructing
the chip. IP reuse, or reuse of the blocks, is made considerably easier because vali-
dated high-level models of the blocks are available at the end of the design process.
These models would then be used to easily evaluate the blocks as to there suitability
for use in other designs. Derivatives, or system reuse, are greatly simplified by the
existence of all of the models and scripts. It makes it much easier for either a new
team, or new team members, to get a quick understanding of an existing design and
initiate the process of making changes to retarget the design to a new application. Fur-
thermore, having models and verification scripts that have been refined by the experi-
ences of the first design team make it more likely that the follow-on designs will
debut without surprises.

An important focus in a good top-down design methodology is the development of a
comprehensive verification plan, which in turn leads to the simulation and modeling
plans. The process begins by identifying particular areas of concern in the design.
Plans are then developed for how each area of concern is to be verified. The plans
specify how the tests are performed, and which blocks are at the transistor level dur-
ing the test. For example, if an area of concern is the loading of one block on another,
the plan might specify that one test should include both blocks represented at the tran-
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4  A Rigorous Top-Down Design Process
The rigorous top-down design methodology described here is a substantial refinement
of the primitive top-down process described in Section 2.2. It follows the principles
described in Section 3 in order to address all of the problems associated with bottom-
up design, as identified in Section 2.1.

4.1  Simulation and Modeling Plans
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sistor level together. For those blocks for which models are used, the effects required
to be included in the model are identified for each test. This is the beginning of the
modeling plan. Typically, many different models will be created for each block.

It is important to resist the temptation to specify and write models that are more com-
plicated than necessary. Start with simple models and only model additional effects as
needed (and as spelled out in the modeling plan). Also, the emphasis when writing
models should be to model the behavior of the block, not its structure. A simple equa-
tion that relates the signals on the terminals is preferred to a more complicated model
that tries to mimic the internal working of the block. This is counter to the inclination
of most designers, whose intimate knowledge of the internal operation of the block
usually causes them to write models that are faithful to the architecture of the block,
but are more complicated than necessary.

It is also not necessary to model the behavior of a circuit block outside its normal
operating range. Instead, you can add code to a model that looks for inappropriate sit-
uations and reports them. Consider a block that supports only a limited input bias
range. It is not necessary to model the behavior of the block when the input bias is
outside the desired range if in a properly designed circuit it will never operate in that
region. It is preferable to simply generate a warning that an undesirable situation has
occurred.

Following these general rules results in faster simulations and less time spent writing
models. However, the question of how much detail is needed in each model is a deli-
cate one that must be answered with great care. It is important to understand the
imperfections in the blocks and how those imperfections affect the overall perfor-
mance of the system before one can know whether the effects should be included in a
model. Also, it is not always true that a pure behavioral model is superior to a more
structurally accurate model. Often making the model more structurally accurate
makes it more predictive, and also may make it easier to include some secondary
effects due to parasitics.

The simulation plan is applied initially to the high-level description of the system,
where it can be quickly debugged. Once validated, it can then be applied to transistor
level simulations.

A formal planning process generally results in more efficient and more comprehen-
sive verification, meaning that more flaws are caught early and so there are fewer
design iterations.
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System-level design is generally performed by system engineers. Their goal is to find
an algorithm and architecture that implements the required functionality while pro-
viding adequate performance at minimum cost. They typically use system-level simu-
lators, such as Simulink [21] or SPW [6], that allow them to explore various
algorithms and evaluate trade-offs early in the design process. These tools are pre-
ferred because they represent the design as a block diagram, they run quickly, and
they have large libraries of predefined blocks for common application areas.

This phase of the design provides a greater understanding of the system early in the
design process [12,13]. It also allows a rapid optimization of the algorithm and moves
trades to the front of the design process where changes are inexpensive and easy to
make. Unworkable approaches are discarded early. Simulation is also moved further
up in the design process where it is much faster and can also be used to help partition
the system into blocks and budget their performance requirements.

Once the algorithm is chosen, it must be mapped to a particular architecture. Thus, it
must be refined to the point where the blocks used at the system level accurately
reflect the way the circuit is partitioned for implementation. The blocks must repre-
sent sections of the circuit that are to be designed and verified as a unit. Furthermore,
the interfaces must be chosen carefully to avoid interaction between the blocks that
are hard to predict and model, such as loading or coupling. The primary goal at this
phase is the accurate modeling of the blocks and their interfaces. This contrasts with
the goal during algorithm design, which is to quickly predict the output behavior of
the entire circuit with little concern about matching the architectural structure of the
chip as implemented. As such, Verilog-AMS becomes preferred during this phase of
the design because it allows accurate modeling of the interfaces and supports mixed-
level simulation.

The transition between algorithm and architecture design currently represents a dis-
continuity in the design flow. The tools used during algorithm design are different
from the ones used during architecture design, and they generally operate off of dif-
ferent design representations. Thus, the design must be re-entered, which is a source
of inefficiencies and errors. It also prevents the test benches and constraints used dur-
ing the algorithm design phase from being used during the rest of the design process.

On the digital side, tools such as SPW do provide paths to implementation via Verilog
and VHDL generation. Similar capabilities do not yet exist for the analog or mixed-
signal portions of the design. An alternative is to use Verilog-AMS for both algorithm
and architecture design. This has not been done to date because the simulators that
support these languages are still relatively new. It will probably take a while for this
approach to become established because of the absence of the application specific
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4.2 System-Level Verification
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Without analog synthesis, analog design is done the old fashioned way, with designers
manually converting specifications to circuits. While this allows for more creativity
and gives higher performance, it also results in more errors, particularly those that
stem from miscommunication. These miscommunications result in errors that prevent
the system from operating properly when the blocks are assembled even though the
blocks were thought to be correct when tested individually.

To overcome this problem, mixed-level simulation is employed in a top-down design
methodology for analog and mixed-signal circuits. This represents a significant but
essential departure from the digital design methodology. Mixed-level simulation is
required to establish that the blocks function as designed in the overall system.

To verify a block with mixed-level simulation, the model of the block in the top-level
schematic is replaced with the transistor level schematic of the block before running
the simulation. For this reason, all of the blocks in the architectural description of the
system must be “pin-accurate”, meaning that they must have the right number of pins
and characteristics of each pin must be representative of the expected signal levels,
polarities, impedances, etc.

The pin-accurate system description, described at a high level, acts as a test bench for
the block, which is described at the transistor level. Thus, the block is verified in the
context of the system, and it is easy to see the effect of imperfections in the block on
the performance of the system. Mixed-level simulation requires that both the system
and the block designers use the same simulator and that it be well suited for both sys-
tem- and transistor-level simulation.

Mixed-level simulation allows a natural sharing of information between the system
and block designers. When the system-level model is passed to the block designer, the
behavioral model of a block becomes an executable specification and the description
of the system becomes an executable test bench for the block. When the transistor
level design of the block is complete, it is easily included in the system-level simula-
tion.

Mixed-level simulation is the only feasible approach currently available for verifying
large complex mixed-signal systems. Some propose to use either timing simulators
(sometimes referred to as fast or reduced accuracy circuit simulators) or circuit simu-
lators running on parallel processors. However, both approaches defer system-level
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libraries needed for rapid system-level exploration. Alternatively, simulators like
AMS Designer from Cadence that supports both algorithm and architecture develop-
ment by combining SPW with Verilog-AMS can be used [2].

4.3 Mixed-Level Simulation
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Though this example is several years old, it is representative of the type of circuit
complexity that is common today. It is a PRML channel chip that is difficult to simu-
late for two reasons. First, it is a relatively large circuit that involves both analog and
digital sections that are closely coupled. Second, the architecture involves complex
feedback loops and adaptive circuits that take many cycles to settle. The combination
of many transistors and many cycles combines with the result being a simulation that
is so expensive as to be impractical. In this case, the expected simulation time was
predicted to be greater than a month.

The traditional approach to simulating a complex circuit like this is to simulate the
blocks individually. Of course this verifies that the blocks work individually, but not
together. In addition, for this circuit it is difficult to verify the blocks when operating
outside the system and it is difficult to predict the performance of the system just
knowing the performance of the individual blocks.

When the architecture was simulated at a high level with each block represented by a
pin-accurate behavioral model, the simulation time was less than 10 minutes. Then,
when a single block was run at the transistor level, the simulation ran overnight. Even
though the full system was never simulated at the transistor level, when fabricated it
worked the first time because this methodology verified the blocks in the context of
the system and it verified the interfaces between the blocks.

4.4 Bottom-Up Verification
Once a block is implemented, one could update the models that represent it to more
closely mimic its actual behavior. This improves the effectiveness of mixed-level and
system-level simulation and is referred to as bottom-up verification. To reduce the
chance of errors, it is best done during the mixed-level simulation procedure. In this
way, the verification of a block by mixed-level simulation becomes a three step pro-
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verification until the whole system is available at transistor level, and neither provides
the performance nor the generality needed to thoroughly verify most mixed-signal
systems. They do, however, have roles to play both within the mixed-level simulation
process and during final verification.

Successful use of mixed-level simulation requires careful planning and forethought
(provided during the verification planning process). And even then, there is no guar-
antee that it will find all the problems with a design. However, it will find many prob-
lems, and it will find them much earlier in the design process, before full-chip
simulations, when they are much less costly to fix. And with mixed-level simulation,
it is possible to run tests that are much too expensive to run with full-chip simulation.

4.3.1 Mixed-Level Simulation Example
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cess. First the proposed block functionality is verified by including an idealized
model of the block in system-level simulations. Then, the functionality of the block as
implemented is verified by replacing the idealized model with the netlist of the block.
This also allows the effect of the block’s imperfections on the system performance to
be observed. Finally, the netlist of the block is replaced by an extracted model. By
comparing the results achieved from simulations that involved the netlist and
extracted model, the functionality and accuracy of the extracted model can be veri-
fied. From then on, mixed-level simulations of other blocks are made more represen-
tative by using the extracted model of the block just verified rather than the idealized
model.

Bottom-up verification should not be delayed until the end of the design process, but
should rather be done continuously during the entire design process. Once a block has
been implemented to the degree that a more representative model can be extracted,
that model should replace the idealized top-level model as long as it does not evaluate
substantially slower. Doing so tends to improve the effectiveness of mixed-level simu-
lation and the accuracy of the extracted models. And, as a side benefit, the models that
would be needed if the block were to be made into a shared IP block are already avail-
able and tested at the end of the project. If the model development for bottom-up ver-
ification were postponed to the end of the design process, the natural pressure to meet
schedule targets as designs near tape-out often result in some of the verification, and
perhaps all of the modeling, being skipped. This increases the chance of error and
decreases the opportunity for reuse.

When done properly, bottom-up verification allows the detailed verification of very
large systems. The behavioral simulation runs quickly because the details of the
implementation are discarded while keeping the details of the behavior. Because the
details of the implementation are discarded, the detailed behavioral models generated
in a bottom-up verification process are useful for third-party IP evaluation and reuse.
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4.5 Final Verification
In a top-down design process, SPICE-level simulation is used judiciously in order to
get its benefits without incurring its costs. All blocks are simulated at the transistor
level in the context of the system (mixed-level simulation) in order to verify their
functionality and interfaces. Areas of special concern, such as critical paths, are iden-
tified up front in the verification plan and simulated at the transistor level. The perfor-
mance of the circuit is verified by simulating just the signal path or key pieces of it at
the transistor level. Finally, if start-up behavior is a concern, it is also simulated at the
transistor level. The idea is not to eliminate SPICE simulation, but to reduce the time
spent in SPICE simulation while increasing the effectiveness of simulation in general
by careful planning.
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During the design phase, the test engineers should use top-level description of the
design as a simulatable prototype upon which to develop the test plan and test pro-
grams. The availability of a working model of the system early in the design process
allows test engineers to begin the development and testing of test programs early.
Moving this activity, which used to occur exclusively after the design was complete,
so that it starts at the same time the block design begins significantly reduces the
time-to-production [9,10,26]. Bringing test development into the design phase can
reduce post-silicon debug time by 50% and can eliminate a turn by finding chips that
are untestable early. It can also improve tests, which then improves yield.

It is in this phase that the dynamic timing simulators (fast reduced-accuracy transis-
tor-level simulators) play an important role. They often have the capacity to simulate
large mixed-signal systems at the transistor level for a reasonable period of time.
Again, even with timing simulators the simulations are generally only fast enough to
provide limited verification. So use of a timing simulator does not offset the need for
mixed-level simulation.
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4.6 Test

5 Further Benefits of Top-Down Design

Besides the benefits described in the previous two sections, a rigorous top-down
design methodology addresses all of the various needs and issues described in Sec-
tions 1-2, which includes the following.

5.1 Improves Communications Between Engineers
Communications between the designers is improved in two substantial ways. First,
the use of a shared high-level model of the system that everyone verifies their designs
in eliminates most of the miscommunication that occurs when following either bot-
tom-up or primitive top-down design processes. In addition, the executable specifica-
tions and plans (models and scripts) are more specific and less ambiguous, and
considerably reduce the time spent writing and reading formal specifications, provid-
ing a more efficient and effective replacement.

5.2 Improves Productivity
The improved productivity that results with a rigorous top-down design process is due
mainly to the elimination of mistakes and re-spins. A more formal, less error-prone
design process with better communication between engineers means that less time is
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Reducing time-to-market is an important way in which design teams can increase
their chance of success and the returns of their products. Part of the reduction in time-
to-market is a result of the improved productivity and effectiveness of the design
team, as described above. However, a rigorous top-down design methodology also has
the benefit in that it allows more engineers to be effectively engaged in the develop-
ment process at the same time, resulting in a further decrease in time-to-market.

As pointed out earlier, the existence of a shared executable high-level model of the
system allows the test program development to be done in parallel with the block
design and assembly, thereby eliminating a large contributor to the delay between
when the design team and when manufacturing think the chip is ready to go. In addi-
tion, many of the final verification tasks that are needed with a bottom-up design style
are moved forward in the form of mixed-level simulations and performed in parallel
by the block and top-level designers. The block developers can also get started devel-
oping models or evaluating IP while the system designer is finalizing the overall sys-
tem architecture.

The improved and more formal communication that results in a rigorous top-down
design methodology allows more engineers to be involved in the design process with-
out overstressing the shared members of the team: the team lead and the top-level and
system designers. There is also a natural support for hierarchy on large projects. Only
two levels have been described in this chapter, but a large chip can be partitioned into
major sections (ex. RF, analog, digital, etc.), with overall leaders for the whole chip,
as well as leaders for the individual sections.
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5.5 Supports IP Reuse
Not only does the top-down design process described in this document improve the
communication between the members of the design team, but when the design is

spent making and recovering from mistakes, and more time is spent on productive
design tasks.

5.3 Improves Ability to Handle Complex Designs
The ability of a design team following a rigorous top-down design methodology to
handle more complex designs follows from the better system exploration and from the
increased understanding of the design that comes from it, and from the improved
communications. In addition, the use of mixed-level simulation dramatically
improves the team’s ability to verify complex circuits.

5.4 Allows Parallel Execution of Design Tasks
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being reused, it also improves communication between design teams. If the design is
being sold, then the process also improves the communications between different
companies: seller and buyer.

A rigorous top-down design process creates as a natural by-product a thoroughly vali-
dated high-level description of the design, which is a critical enabler of IP reuse. This
description is used by potential customers when evaluating the IP and by customers
when integrating the IP. To see the value of having the needed model fall out of the
design process as a by-product, consider the case where it does not. Using a bottom-
up design process requires that the model be developed after the design is complete.
This creates several barriers to the success of the IP. First, with the model not being
used as an integral part of the design process it does not get much in the way of inci-
dental testing. Substantial extra effort is required to field a high quality model, result-
ing in extra cost and delay. Furthermore, it is unlikely that the same quality model
would be developed with an adjunct process. Second, with the model not being lever-
aged during the design process, the total cost of developing the model offsets any rev-
enue from the IP, requiring higher levels of market success to break even. Finally, the
model development process delays the release of the IP. This is especially trouble-
some as the price of IP drops dramatically as it becomes a commodity. Time-to-mar-
ket is especially critical in the IP market as the price can drop by a factor of ten within
a year of its release. Delay of even a month dramatically affects the total revenue of a
product.

Many design groups currently claim to be following a top-down design process, yet
experience most of the problems attributed to the use of a bottom-up design style.
This is because they are basically employing a bottom-up style with a few relatively
cosmetic changes that serve to give the appearance of top-down design. This chapter
lays out a series of principles that must be followed to realize all of the benefits asso-
ciated with a rigorous top-down design methodology, with Verilog-AMS being the
foundation upon which that methodology is built.

A rigorous top-down design methodology requires a significant investment in time
and training and a serious commitment throughout the design process if it is to be suc-
cessful. However, it is much easier the second time around and once mastered pro-
vides dramatic returns. Fewer design iterations and silicon re-spins are needed, which
results in a shorter and more predictable design process. More optimal designs are
produced that are better verified. It allows design teams to be larger and more dis-
persed, giving the option of trading a higher initial investment rate for a shorter time-
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6 Final Words on Top-Down Design
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to-market. And it is relatively tolerant of changes in the requirements that occur late
in the design cycle.

Employing a rigorous top-down design methodology dramatically increases the effec-
tiveness and productivity of a design team. If a design team fails to move to such a
design style while its competitors do, it will become increasingly ineffective. It even-
tually will be unable to get products to market in a time of relevance and so will be
forced out of the market.

Given the high pressure world that most designers live in, it is difficult for them to
acquire the skills needed to be successful in a rigorous top-down design methodology.
In addition, there is little training available from continuing education centers. This
suggests that the transition to top-down design will be slow. The best hope for accel-
erating the move to top-down design is for universities to give designers the necessary
background and training in the benefits and practice of rigorous top-down design.
There are some signs that this is beginning [11], but it is not as aggressive or as wide-
spread as it needs to be in order for there to be a smooth and timely transition.

With Chapters 1-2 as a motivation as to the importance of Verilog-AMS, we are now
ready to present the language itself. Verilog-A is introduced in the next chapter. With
Verilog-A you can model purely analog components and blocks. Chapter 4 introduces
Verilog-AMS. These two chapters should provide you with an understanding of the
fundamental concepts of the two languages, but not all of the details. Those are pre-
sented in Chapter 5.

What’s Next
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3
In this chapter, Verilog-A, the analog-only subset of Verilog-AMS, will be introduced
using a series of practical examples, one example per section. In the beginning the
examples will be simple, but they will be useful as is. As the chapter progresses the
examples will become more advanced. Once the example is given, all aspects of it
will be discussed. As new ideas are presented, they will be set in bold italics to make
them easier to find and to call your attention to them as important points. Once an
example is covered in detail, straight forward extensions to the concepts introduced
by the example will be covered. Finally, pointers will be given to the language refer-
ence where more information can be found. These references appear like this
(5§2.3p157), which includes the chapter number, the section number, and finally the
page number. In this way, the language will be covered with a fair degree of complete-
ness.

One of the simplest models that can be described by Verilog-A is a resistor. In gen-
eral, a resistor is a relationship between voltage and current, as in

where v represents the voltage across the resistor, i represents the current through the
resistor, and f is an arbitrary function of two arguments. This is the most general defi-
nition of a resistor and so covers what people commonly refer to as a resistor (more
precisely termed a linear resistor) as well as nonlinear resistors such as the intrinsic
part of diodes and transistors. The resistance of a resistor is the derivative of the volt-
age with respect to current.

The equation for a simple linear resistor is

where r is the resistance. A model for a linear resistor is given in Listing 1. This
model uses only Verilog-A constructs and so can be used with both Verilog-A and
Verilog-AMS simulators.

1 Resistor
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The first line of this model is

// Linear resistor (resistance formulation)

The // characters begin a comment (5§1.1p149), which extends to the end of the line.
Comments are meant to explain the model to any person that might be trying to
understand the model. They are ignored by whatever program is reading the model. In
this book, comments will be placed in italics to make them easier to distinguish from
the other parts of the model. Comments can also be written inline by using ‘/*’ to start
the comments, and ‘*/’ to end them. Inline comments are rare, but this form is often
use to write multi-line comments, such as

/*
*RESISTOR
* A linear resistor that uses the resistance formulation: v = ri
*/

Verilog-A/MS is a language that supports multiple disciplines. A discipline is a col-
lection of related physical signal types, which in Verilog-A/MS are referred to as
natures. For example, the electrical discipline consists of voltages and currents,
where both voltage and current are natures. Verilog-A/MS by itself defines only one
discipline, the empty discipline, and it defines no natures. Thus, in order for the lan-
guage to be able to describe models that operate on physical signals, the disciplines
and natures associated with those signals must be defined. A collection of common
disciplines and natures are defined in a file disciplines.vams (5§2.4p159) that is pro-
vided with all implementations of Verilog-A/MS. That file is included into this model
by writing

`include “disciplines.vams”

The tick (`) that precedes the word include indicates this is a preprocessor directive
(5§1.4p151). This line is replaced by the language preprocessor with the contents of
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LISTING 1 Verilog-A/MS description of a linear resistor.

// Linear resistor (resistance formulation)

`include “disciplines.vams”

module resistor (p, n);
parameter real r=0; // resistance (Ohms)
inout p, n;
electrical p, n;

analog
V(p,n) <+ r* l(p,n);

endmodule

v = V(p,n)
i = I(p,n)
v = ri



1 Resistor

the file disciplines.vams before being passed to the compiler. It defines the names
electrical, V, and I, which are used later in the model. It also defines other disciplines
and natures, but those are not used in this model. The name include is a keyword of
the Verilog-A/MS language. Being a keyword, it is not a name that you can choose,
both the name and its meaning are specified by the language itself (5§1.3p150). All
keywords in listings are set in bold text.

It is not necessary to use disciplines.vams. You are free to create your own natures and
disciplines. How to do so is described later in Section 3.1 on page 51.

The basic building blocks of Verilog-A/MS are modules. Modules are descriptions of
individual components (5§9.1p226). In Verilog-A/MS modules are a block of state-
ments that begin with the keyword module, which is then followed by the name of the
module and the list of ports. The statement is terminated with a semicolon.

module resistor (p, n);

A parameter is specified for the module using the parameter statement (5§2.3p157).

parameter real r=0;

In this case, a real valued parameter r is defined that can be specified when the mod-
ule is instantiated (more about this later). The parameter is given a default value of 0,
meaning that if the value is not specified when the module is instantiated, it will
assume a value of 0. Thus with no value specified, the resistor will act as a perfect
short circuit. All parameters must be given default values. However, specifying the
type, in this case real, is optional. If not given, the parameter will take the type of the
default value.

Ports are the points where connections can be made to the component (5§2.5p164). In
this case, they are the terminals for the resistor. So far, the ports have only been given
names, but have not been described in any other way. That is done in the two subse-
quent lines.

inout p, n;
electrical p, n;

These two lines describe the direction and the type of the ports. The port direction is
given by the statement that begins with the keyword inout. There are three directions
possible, input, output, and bidirectional as designated by the input, output, and inout
keywords. Each port should be given a direction. Input ports can sense the signals that
they are connected to, but cannot affect them; output ports can affect the signals, but
cannot sense them; and inout ports can both sense and affect the signals. Since inout
can do everything that both input and output ports can do, one might wonder why
input and output ports are needed. In fact, they are not strictly needed. However, using
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input and output ports are considered a good practice because it provides clarity of
intent. Labeling a port as either input or output at the top of the module makes the
behavior of the module clearer. It also allows for extra error checking by whatever
tool is reading the module.

The type of the ports is specified by the second of the two lines in which the name of
a discipline is followed by a list of ports. In this case the p and n ports are defined to
be electrical, meaning the signals associated with the ports are expected to be voltage
and current.

The actual behavior of the module is defined in the next two lines.

analog
V(p,n) <+r * l(p,n);

The analog keyword introduces an analog process (5§6.1p196). An analog process is
used to describe continuous time behavior. Syntactically, it is the analog keyword fol-
lowed by a statement that describes the relationship between signals. This relationship
must be true at all times. In this case, the statement that defines the relationship
between the signals on the ports is a contribution statement. A contribution statement
takes the form of a branch signal on the left side of a contribution operator, ‘<+’, fol-
lowed by an expression on the right side (5§3.2p169). The branch signal on the left
side is forced to be equal to the value of the expression. The branch signal on the left
is V(p,n), it is the voltage across the implicit branch between the p and n ports. The
expression on the right is r*I(p,n), the product of the parameter r and the branch sig-
nal I(p,n), which is the current that is flowing through the implicit branch between the
p and n ports. Thus, the contribution statement establishes a relationship between the
branch voltage and the branch current that models a linear resistor with resistance r.

The signals V(p,n) and I(p,n) are the voltage across and the current through the
implicit or unnamed branch between the nodes p and n (5§2.6p167). An implicit
branch is referenced using its end points, in this case p and n. The signals associated
with the branch are accessed using the access functions that are given in the defini-
tion of the discipline in disciplines.vams for the branch. An implicit branch inherits its
discipline from its endpoints, both of which must have equivalent disciplines. In this
case, the discipline of the end points p and n are electrical, and so the discipline of the
implicit branch is electrical. The electrical discipline defines V as the access function
for the potential of the branch and I as the access function for the flow through the
branch. As such, the V in V(p,n) accesses the voltage across p and n, and the I in I(p,n)
accesses the current that flows between p and n.

Finally the module definition is terminated with the endmodule keyword. Any state-
ments that follow it are not associated with this module.
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1 Resistor

The resistor model given in Listing 1 is given using a resistance formulation, meaning
that the voltage across the resistor is given as a function of the current through the
resistor. It is also possible to use a conductance formulation, where the current
through the resistor is given as a function of the voltage across the resistor. In this case
the resistor is referred to as a conductor. Its constitutive relation is,

where g is the conductance. A model for it is given in Listing 2.

A capacitor is a relationship between voltage and charge, as in

where v represents the voltage across the capacitor, q represents the charge through
the capacitor, and f is an arbitrary function of two arguments. This is the most general
definition of a capacitor. The capacitance is the derivative of the charge with respect
to voltage. The equation for a simple linear capacitor is

where c is the capacitance. A model for a linear capacitor is given in Listing 3. This
model uses only Verilog-A constructs and so can be used with both Verilog-A and
Verilog-AMS simulators.

This model offers one complication not found in the earlier models. The model is for-
mulated in terms of voltage and charge. We already know how to access the voltage
on the capacitor, but not charge. There is no charge access function associated with
electrical branches. However, as we have seen before, there is an access function for
current, and current is related to charge in that
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LISTING 2 Verilog-A/MS description of a linear conductor.

// Linear resistor (conductance formulation)

`include “disciplines.vams”

module conductor (p, n);
parameter real g=0; // conductance (Siemens)
inout p, n;
electrical p, n;

analog
I(p,n) <+ g * V(p,n);

endmodule

v = V(p,n)
i = I(p,n)
i = gv

1.1 Capacitor
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where represents the flux across the inductor, i represents the current through the
inductor, and f is an arbitrary function of two arguments. This is the most general def-
inition of an inductor. The inductance is the derivative of the flux with respect to cur-
rent. The equation for a simple linear inductor is

where l is the inductance. A model for a linear inductor is given in Listing 4.

As with the capacitor, there is a complication. In this case, there is no access function
for the flux of the branch, and so the flux is related to the voltage using
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Thus, the model is formulated in terms of voltage and current, and the charge is con-
verted to current using the ddt operator (5§4.6.1p179), which returns the time deriva-
tive of its argument. Thus, the constitutive relation for the linear capacitor becomes,

1.2 Inductor

LISTING 3 Verilog-A/MS description of a linear capacitor.

// Linear capacitor

`include “disciplines.vams”

module capacitor (p, n);
parameter real c=0; // capacitance (F)
inout p, n;
electrical p, n;

analog
I(p,n) <+ c * ddt(V(p,n));

endmodule

v = V(p,n)
i = i(p,n)

which is encoded as a Verilog-A/MS contribution statement in Listing 3 as

I(p,n) <+ c * ddt(V(p,n));

An inductor is a relationship between flux and current,



2 A Simple Circuit

At this point, if you have understood what has been covered so far, you should be able
to write Verilog-A models for an ideal DC voltage or current source. Please try to do
so.

When finished, compare the models you wrote to those given in Listing 5 and
Listing 6. Did you remember to change the direction of the ports from inout to out-
put?

2 A Simple Circuit

Now that we have seen how to describe a component using a module, we will see how
to combine instances of modules into a circuit. A resistor and a voltage source are
combined in the circuit of Listing 7. The model starts off by including the models for
the resistor (Listing 1) and the voltage source (Listing 5) using include statements. It
is important to realize that these files, unlike discipline.vams, reside in the local direc-
tory, whereas discipline.vams, being a system file, resides in the installation directory.
Generally simulators support a search path, which is an ordered list of directories that
might contain include files. These directories are examined in turn by the include
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LISTING 4 Verilog-A/MS description of a linear inductor.

// Linear inductor

`include “disciplines.vams”

module inductor(p, n);
parameter real I=0; // inductance (H)
inout p, n;
electrical p, n;

analog
V(p,n) <+ I * ddt(l(p,n));

endmodule

v = V(p,n)
i = I(p,n)

and the constitutive relation is reformulated in terms of voltage and current with

1.3 Voltage and Current Sources
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statement when looking for files. It is usually possible to modify the search path, but
the process of doing so is implementation specific. All simulators include the local
directory and the installation directory on the search path.

The simple circuit of Listing 7 begins as did the others, with a comment and include
of disciplines.vams, which provides the electrical discipline that are used to declare
the nodes to be used in the circuit. Next, the previously given descriptions of the vsrc
and resistor are included. Then comes the beginning of the module definition.

module smpI_ckt;

This differs somewhat from those already given in that the terminal declarations are
missing. That is to be expected as this is the top-level circuit and as such has no termi-
nals.

Next, two electrical nodes are defined: n and gnd. Nodes are used as interconnection
points for ports. It is not possible to directly connect one port to another. Instead, one
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LISTING 5 Verilog-A/MS model for a constant-valued voltage source.

// DC voltage source

` include “disciplines.vams”

module vsrc (p, n);
parameter real dc=0;  // dc voltage (V)
output p, n;
electrical p, n;

analog
V(p,n) <+ dc;

endmodule

v = V(p,n)
i = I(p,n)

LISTING 6 Verilog-A/MS model for a constant-valued current source.

// DC current source

`include “disciplines.vams”

module isrc (p, n);
parameter real dc=0;     // dc current (A)
output p, n;
electrical p, n;

analog
l(p,n) <+ dc;

endmodule

v = V(p,n)
i = I(p,n)



2 A Simple Circuit

LISTING 7 Verilog-A/MS structural model.

//A simple circuit
`include “disciplines.vams”
`include  “vsrc.vams”
`include  “resistor.vams”

module smpl_ckt;
electrical n;
ground gnd;

vsrc #(.dc(1)) V1(n, gnd);
resistor #(.r(1k)) R1(n, gnd);

endmodule

indirectly connects them by connecting the ports to the same node. Any number of
ports can be connected to a node. Nodes are declared in a manner very similar to
ports. The difference is nodes are not given in the port list in a module definition, and
one does not specify the direction of nodes.

electrical n;

Every circuit has one node designated as the ground or reference node (5§2.5p164).
This node defines zero potential for all disciplines, and as such it does not have a dis-
cipline itself. Local access to the reference node is provided through the ground state-
ment.

ground gnd;

The ground statement defines a name, in this case gnd, that is used in the local context
to refer to ground.

The circuit itself is constructed by creating instances of predefined modules, wiring
them together by connecting them to nodes, and specifying parameters for them. This
is done for the voltage source and the resistor in the following two lines.

vsrc #(.dc(1)) V1(n, gnd);
resistor #(.r(1k)) R1(n, gnd);

The first statement directs that an instance of the module vsrc be connected to nodes n
and gnd and be named V1, and that its parameter dc be given a value of 1. The second
directs that an instance of resistor be named R1 and connect to n and gnd, and that its
parameter r take a value of 1k. The value 1k is a number with a scale factor, it is
short-hand for 1000, and consists of a mantissa (a plain number without an exponent),
in this case 1, followed by a scale factor, k, which is a symbol that means kilo or 1000.
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The module names and instance names are given in a straight forward manner. In the
first case, you are specifying the names of existing module definitions, in the second
you are assigning names for the instances you are creating. You are free to use any
names that meet the basic Verilog naming conventions as long as the names are
unique within the module.

The parameter list can be given as an unordered comma separated list of name value/
pairs as in Listing 7, or an ordered comma separated list of values without names. In
either case, the parameter list is given within a matched pair of parentheses that follow
a pound sign, as in

# (parameter list)

Name/value pairs are given with the following syntax

.name(value)

Assume a module has two parameters p1 and p2 that were declared in that order. Fur-
ther assume that values v1 and v2 should be assigned to parameter p1 and p2. This can
be done using any of the following parameter lists (5§9.2p227),

#(.p1(v1), .p2(v2))
#(.p2(v2), .p1(v1))
#(v1, v2)
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The value used is the product of the mantissa and the scale factor (5§2.1.2p153).
Table 2 on page 154 gives a complete list of scale factors.

In general, instance statements contain four things in the following order:

1. The name of the module being instantiated,

2. the list of values to be assigned to the module parameters (optional),

3. the name of the instance (optional), and

4. a list of nodes to which the modules ports are to be connected.

In this example, the two instance statements are partitioned into their component
pieces in Table 1.
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If one wanted to only specify a value for p2 and have pl take its default value, use any
of the following

#(.p2(v2))
#(.p1(), .p2(v2))
#(, v2)

Notice that when passing values to parameters by order, one simply leaves out the val-
ues for the parameters that should take their defaults. The commas are used to identify
which values are missing.

The node lists can be specified in a similar manner (5§9.2p227). The only difference
is that the leading pound sign is not used with node lists and the parentheses that sur-
round the node list must be specified, even in the node list is empty. Thus, if a module
supports two ports, p1 and p2, declared in that order, and they should be connected to
nodes n1 and n2,

(.p1(n1), .p2(n2))
(.p2(n2), .p1(n1))
(n1, n2)

As with parameters, a node could be specified for p2 while having p1 left uncon-
nected using any of

(.p2(n2))
(.p1(), .p2(n2))
(, n2)

Once all of the instances are specified, the module terminates with the endmodule
statement. This type of module is often referred to as a structural module, or a netlist,
as it consists only of instances of other modules. Structural modules are characterized
as having instance statements, but no behavioral descriptions, such as the analog pro-
cess. In contrast, the resistor module given in Listing 1 is considered a behavioral
module, as it contains an analog process and no instance statements. A behavioral
model is simply a set of equations that have the property that the behavior of the sig-
nals at the terminals matches that of the component being modeled. It is important to
recognize that the behavior of the quantities inside the model may not in any way
match the behavior of the modeled component. This is part of the advantage of behav-
ioral models; they can be abstractions that hide the complexity of the internal behav-
ior of a component. Besides having structural and behavioral modules, it is also
possible to have modules that contain both structure and behavior.

Any nodes that are not accessed in a behavioral block need not be declared. The rea-
son for this is that within the module the signals on the node are not being accessed;
only a connection is being made to the node. Thus, the module given in Listing 7 is
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longer than it needs to be. It can be shortened by removing the declaration of the
nodes, as shown in Listing 8. In this case, the inclusion of disciplines.vams is
removed because the definition of electrical is no longer needed, and the declaration
of node n is removed. In addition, the inclusion of the resistor and voltage source def-
initions was removed. It is assumed that they are available in a library that is known to
the simulator.

A system is considered to be a collection of interconnected components that are acted
upon by a stimulus and produce a response. In Verilog-A/MS, components are
instances of modules. The components themselves might also be systems, in which
case a hierarchical system is defined. If a component does not have any sub-compo-
nents, then it is considered a primitive component, which is necessarily a behavioral
module. Each primitive component connects to one or more nodes through ports† or
terminals as shown in Figure 1.

In order to simulate systems, it is necessary to have a complete description of the sys-
tem and all of its components. Descriptions of systems are given structurally. That is,
the description of a system contains instances of components and how they are inter-
connected. Descriptions of primitive components are given behaviorally. That is, a
mathematical description is given that relates the signals at the ports of the compo-
nent.

† The term port, used heavily in the Verilog world to mean terminal or pin, is somewhat of a
misnomer. Port normally implies a pair of related terminals for which only two quantities
are important, the port voltage and the port current. The port voltage is the potential differ-
ence between the two terminals, and the port current is the flow between the two terminals.
The current into one terminal must exactly equal the current out of the other. Though this is
the established definition of port, for consistency with Verilog terminology, in this book the
term port is instead used to mean terminal.
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2.1 Conservative Systems

LISTING 8 An abbreviated version of the module given in Listing 7.

// A simple circuit

module smpl_ckt;
ground gnd;

vsrc #(.dc(1)) V1(n, gnd);
resistor #(.r(1k)) R1(n, gnd);

endmodule
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The circuit of Listing 7 is an example of a conservative system. A conservative sys-
tem is a system where some quantity, such as energy or momentum, is explicitly con-
served. By conserved it is meant, that when observed for the entire system, the
conserved quantity must always be constant. Many types of systems can be decom-
posed and modeled in a relatively simple and compact manner using the concepts of
conservative systems, particularly lumped systems that involve forces. Electrical net-
works, for example, are very naturally modeled as conservative systems, as are many
mechanical and thermal problems. In general, anything that can be modeled with an
‘electrical equivalent’ can be modeled as a conservative system.

To support the modeling of conservative systems, Verilog-A/MS allows models to be
formulated in terms of potentials and flows using the concepts of nodes and branches.
A potential is a physical quantity that satisfies Kirchhoff’s Potential Law (KPL).
That is, when the quantity is accumulated around a closed path, it will always sum to
zero. A flow is a physical quantity that satisfies Kirchhoff’s Flow Law (KFL); that is
when accumulated over a closed surface it must always total to zero. In electrical sys-
tems, voltage is an example of a potential, and both current and charge are examples
of flows. KPL and KFL are generalizations of the famous Kirchhoff’s Voltage Law
(KVL) and Kirchhoff’s Current Law (KCL). They are illustrated for a lumped net-
work in Figure 2. Notice that the lumped network is drawn as a collection of nodes
and branches. A node is a point of interconnection for the branches, and a branch is a
path between two nodes. As such, a branch always has two terminals and each termi-
nal connects to one node. Both nodes and branches represent KFL surfaces, and as
such, the total flow into either a node or branch must exactly equal the flow out of the
same node or branch. Since a branch only has two terminals, the flow in one terminal
must exactly equal the flow out of the other. Any closed loop of branches represents a
KPL path, and as such, the potential on a branch exactly equals the difference in
potential of the nodes to which it is attached. Any conservative lumped network can
be represented as a collection of nodes and branches, though a single component may
need to be represented by more than one branch. Furthermore, by Tellegen’s Theorem
[7] the branch potentials and flows satisfy
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and so the network is conservative in the quantity that is the product of the potential
and flow. Typically, that quantity is either energy or power, but as shown in Table 2, it
need not be.
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With conservative systems, Kirchhoff’s Potential Law is formulated in terms of
potential differences. This suggests that one could take a set of potentials that satisfy
KPL for a network, and add a fixed value to each potential, and that the new set of
potentials would also satisfy KPL. To eliminate this ambiguity, one node in the circuit
is denoted the reference or ground node. The potential on this node is fixed to be
zero. In this way, the ambiguity is removed.

In a Verilog-A/MS system, the ground node always exists and one must simply con-
nect to it. There are two ways of doing so. One way is to simply give the ground node
a name and then use it when constructing a network. This approach is shown in
Listing 7. In this example, the ground node is declared to be gnd, a name that is valid
within the module that contains the declaration. Distinct modules may use different
names for ground. For example, in one module it may be named gnd, in another earth,
but both names refer to the same node. A different approach is typically used in
behavioral models. In this case, one simply uses access functions with one argument.
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Verilog-A/MS assumes a particular set of reference directions for potentials and flows
as shown in Figure 3. The reference direction for a potential is indicated by the plus
and minus symbols near each terminal. The branch potential P is positive whenever
the potential of the terminal marked with a plus sign (a) is larger than the potential of
the terminal marked with a minus sign (b). Similarly, the flow F is positive whenever
it moves in the direction of the arrow (in this case from + to –). For electrical
branches, this potential is accessed using V(a, b) and this flow is accessed using I(a,
b).

Verilog-A/MS uses associated reference directions [7]. A positive flow enters a
branch through the terminal marked with the plus sign and exits the branch through
the terminal marked with the minus sign.

An example of a multi-disciplinary model is a motor, which combines electrical and
rotational kinematic modeling. A motor is described in rather simple terms by the fol-
lowing constitutive relations,
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In such cases, the other argument is assumed to be the ground node. For example, if
the following equation is used to describe a floating resistor (with terminals p and n)

V(p,n)<+r*I(p,n);

then the following would be used to describe a grounded resistor (with terminal p)

V(p)<+r* I(p);

In this case, V(p) accesses the potential from terminal p to ground, and I(p) accesses
the current that flows from terminal p to ground.

2.1.2  Reference directions



3 Motor

where v is the voltage applied across the winding in volts, i is the current through the
winding in amperes, is the angular velocity of the shaft in radians per second, and
is the torque acting on the shaft in Newton-meters. These equations are implemented
in a Verilog-A/MS model given in Listing 9.

This model is constructed using two disciplines, electrical and rotational_omega,
which are shown in Listing 10 (5§2.4p159). Also shown are the natures used in these
disciplines. These definitions are found in disciplines.vams.
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3.1 Natures and Disciplines

LISTING 9 A motor model and a simple test bench.

// A motor test circuit
`include “disciplines.vams”
`include “vsrc.vams”

module test;
ground gnd;

vsrc #(.dc(1)) V1 (drive, gnd);
motor M1 (drive, gnd, shaft);

endmodule

// Motor
module motor(shaft, p, n);

parameter real km = 4.5;
parameter real kf = 6.2;
parameter real j = 0.004;
parameter real d = 0.1 ;
parameter real r = 5.0;
parameter real I = 0.02;
inout shaft, p, n;
rotational_omega shaft;
electrical p, n;

// motor constant (V-s/rad)
// flux constant (N-m/A)
// inertia of shaft
// drag (friction) (N-m-s/rad)
// motor winding resistance (Ohms)
// motor winding inductance (H)

analog begin
V(p,n) <+ km*Omega(shaft) + r*l(p,n) + l*ddt(l(p,n));
Tau(shaft) <+ kf*l(p,n) – d*Omega(shaft) – j*ddt(Omega(shaft));

end
endmodule
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A nature is used to describe basic physical quantities. The natures shown contain
three pieces of information, the units of the quantity, a name used when accessing the
quantity from a node, terminal, or branch, and a number that gives an indication of the
expected size of the quantity. Essentially the nature combines these three pieces of
information into a single unit and gives it a name, making it easy to incorporate them
into a discipline as a group. Consider the nature for current,

nature Current
units = “A”;
access = I;
abstol = 1e–12;

endnature

The name of the nature is Current. By convention, the names for natures are always
capitalized. This makes it easy to distinguish them from disciplines, which are always
fully lower case. The units are given with the units keyword to be “A”, which is short
for amperes. The name of the access function is given with the access keyword to be
“I”, so the current on a branch b would be denoted I(b). Finally, the scale of the sig-
nals of this nature is given with the abstol keyword to be A, or 1 pA. The abstol,
short for absolute tolerance, represents the largest amount of current that can always
be considered negligible. It is used when simulating systems described in Verilog-A/

LISTING 10 The electrical and rotational_omega disciplines and their associated
natures.

// Voltage in volts
nature Voltage

units = “V”;
access = V;
abstol = 1u;

endnature

// Current in amperes
nature Current

units = “A”;
access = I;
abstol = 1p;

endnature

// Electrical
discipline electrical

potential Voltage;
flow Current;

enddiscipline

// Angular velocity in radians per second
nature Angular_Velocity

units = “rads/s”;
access = Omega;
abstol = 1u;

endnature

// Torque or Moment in Newton meters
nature Angular_Force

units = “N-m”;
access = Tau;
abstol = 1u;

endnature

// Rotational (velocity)
discipline rotational_omega

potential Angular_Velocity;
flow Angular_Force;

enddiscipline
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MS so that the simulator can trade simulation speed for accuracy. Without an under-
standing of what level of error is acceptable, the simulator would have to be so con-
servative that the simulations would not be practical.

Once defined, the natures can be incorporated into disciplines as a way of declaring
the potential and flow. The disciplines are then used when declaring nodes, terminals,
and branches.

Nature and discipline definitions are usually taken from the disciplines.vams header
file (5§2.4p159), but you are also free to create your own. Often this occurs when
modeling a type of system not currently supported by Verilog-A/MS, such as optical
systems.

Natures include in their definition an indication of the scale of the signals they repre-
sent. But what if there are signals of the same underlying type that have vastly differ-
ent scales? For example, consider the model of a high-voltage power distribution
system being controlled by low-voltage electronics. The default definition for voltage
and current sets the absolute tolerance to and 1 pA respectively, values suitable
for the low-voltage electronics, but much to small for the high-power sections of the
system. One could define new voltage and current natures that have larger values for
the absolute tolerance, but what is to be done with branches that span the two sections
of the system. The concern is that Verilog-A/MS does not allow disciplines on each
end of a branch to be incompatible. If the high- and low-power natures are defined
independently, then the resulting high- and low-power disciplines will be incompati-
ble. To avoid this problem, Verilog-A/MS provides the concept of base natures and
derived natures. Assume the nature defined for voltage and current in Listing 10 are
the base natures, then deriving new natures for the high-power sections of the system
would be done with

nature HighVoltage: Voltage
abstol = 1;

endnature

nature HighCurrent: Current;
abstol = 1e–3;

endnature

discipline hv_electrical
potential HighVoltage;
flow HighCurrent;

enddiscipline

In this case, HighVoltage is derived from Voltage, and inherits all of its properties
except for abstol, which is set to 1 (any of the properties of the base nature can be
overridden in the derived nature except the access function and the units). The same is
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true for HighCurrent and Current. Now, consider the following model fragment rep-
resenting a resistor that spans the high and low voltage domains,

electrical Iv;
hv_electrical hv;

analog
l(hv,lv) <+ g*V(hv,lv);

This is legal because the hv_electrical and electrical disciplines are compatible. They
are compatible because disciplines with compatible corresponding natures are com-
patible, and natures derived from the same base nature are compatible.

4 Junction Diode
An ideal diode is a component that allows current to flow in one direction but not in
the other. A junction diode is a component that can be made using a semiconductor
process that approximates this behavior. It is a nonlinear electrical component with
the following characteristics,

To implement the model in Verilog-A/MS it must be formulated as constitutive rela-
tions in terms of branch potentials and flows. This is already the case for the resistive
portion of the model, (15), but not for the capacitive part, (18). To avoid the charge
conservation problems the constitutive relationship of the nonlinear capacitor must be
formulated in terms of charge and voltage [19,20]. To do so, the capacitance of (18) is
integrated with respect to voltage to find the charge,

Then the total diode current results from combining (15) and (19),
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The Verilog-A/MS model that implements these equations is given in Listing 11.

LISTING 11 Verilog-A/MS model for a junction diode (this model should not be used in
practice as it fails when

// Junction diode

`include “disciplines.vams”

module diode (a, c);
parameter real is=10f from (0:inf);
parameter real tf=0 from [0:inf);
parameter real cjo=0 from [0:inf);
parameter real phi=0.7 exclude 0;

// saturation current (A)
// forward transit time (s)
// zero-bias junction capacitance (F)
// built-in junction potential (V)

inout a, c;
electrical a, c;
branch (a, c) res, cap;
real qd;

analog begin
l(res) <+ is*(limexp(V(res)/$vt) – 1);
qd = tf*l(res) – 2*cjo*phi*sqrt(1 – V(cap)/phi);
l(cap) <+ ddt(qd);

end
endmodule

The model begins with the traditional inclusion of the disciplines. The module itself is
given the name diode and two electrical terminals are named a and c, which represent
the anode and cathode.

Four parameters are declared, is, tf, cjo, and phi, which represent and

parameter real is=10f from (0:inf); // saturation current (A)
parameter real tf=0 from [0:inf); // forward transit time (s)
parameter real cjo=0 from [0:inf); // zero-bias junction capacitance (F)
parameter real phi=0.7 exclude 0; // built-in junction potential (V)

New in these declarations is the use of range limits to constrain the values specified
for these parameters to a particular range (5§2.3p157). Range limits, when given,
always follow the default value in a parameter declaration or another range limit, and
take the form of a keyword (either from or exclude) followed by a range. Use of the
from keyword indicates that the parameter value must be within the range, the exclude
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keyword indicates that it must not. The range may either be a point or an interval. The
declaration of phi contains an example of a point exclusion range.

The other range limits used in the diode model are interval limits. An interval is
defined by giving its two end points within delimiters and separated by a colon. The
delimiters may either be parentheses or brackets and need not be matched. Parenthe-
ses are used to indicate that the end of the interval is open and brackets indicate the
end is closed. A closed end includes the end point itself, whereas an open end does
not. To specify that the parameter has no bound on one end, the end point is given to
either be –inf if it is the left end point, or inf if it is on the right. The keyword inf is
used to designate infinity.

From the parameter declarations given in Listing 11, it should be clear that the value
specified for is must be positive (0 < is), the value for tf and cjo must be nonnegative

and phi must not be zero. In general it is a good practice to include
range limits on all parameters for which it is appropriate as it improves the robustness
of your model and makes your model easier to understand. Also, adding a description
to your parameter as done in this model is a great habit to get into, as is adding the
units to the description if appropriate.

A new type of statement is given next. A branch declaration statement is used to
define explicit or named branches (5§2.6p167).

branch (a, c) res, cap;

In this case two branches are created, both of which are connected between ports a
and c. As such, these two branches are in parallel. The discipline for the branches is
electrical, because the end point a and c are declared to be electrical. The disciplines
on the end points of a branch must always be compatible, a constraint that was
described more fully in Section 3.1 on page 51. One of these branches, res, will be
used to represent the resistive part of the diode model, and the other, cap, will repre-
sent the capacitive part. By declaring two parallel branches, it is possible to distin-
guish the currents flowing through the two branches. This would not be possible using
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the implicitly declared branches used earlier, which only identifies a branch by its
endpoints.

The last declaration given in Listing 11 is

real qd;

This simply declares qd to be a real variable (5§2.2p155). Real variables are always
initialized to zero. Verilog-A/MS also allows integer variables to be declared. Each
variable, whether it be integer or real, is associated with a kernel, either continuous
time or discrete event, depending on where the variable is assigned a value. If
assigned a value in an analog process, it is associated with the continuous time kernel;
otherwise it is associated with the discrete event kernel. Integer variables associated
with the continuous time kernel are initialized to 0; those associated with the discrete
event kernel are initialized to x, or unknown.

The rest of the model contains the constitutive equations for the model. The equations
are given in the form of two contribution statements within an analog process. In this
case, the analog process contains more than a single statement, and so the beginning
and end of the process are delineated by the begin and end keywords. The first contri-
bution statement gives the branch equation for the resistive part of the diode
(5§3.2p169).

l(res) <+ is*(limexp(V(res)/$vt) – 1);

This statement computes the branch current l(res) from the branch voltage V(res), and
so implements (15). It employs two unique capabilities of Verilog-A/MS, the limexp()
function and $vt system function. The ‘$’ symbol is used before a name to denote a
system task or system function. The $vt system function returns the thermal voltage,
kT/q, for the current temperature. $vt takes an optional argument, the temperature in
Kelvin; when given it will return the thermal voltage associated with that temperature.
Without an argument, $vt is equivalent to $vt( $temperature ), where $temperature is a
system function that returns the current ambient temperature (5§4.5p175).

The limexp() function is functionally identical to the exp() function. When given an
argument of x both return However, limexp() also performs limiting, and hence its
name, which is short for limited exponential (5§4.8.1p188).

Limiting is a technique used to help improve the convergence of the simulator running
the model. An exponential is a very nonlinear function, which if given a large argu-
ment will return an extremely large value. This can occasionally cause problems for
the iterative methods used within simulators, causing them to fail because they never
converge. Limiting places a bound on how fast the return value can change from iter-
ation to iteration. This bound is actually a complex function of the current and past
arguments and is not something you can set. The limexp() function coordinates with
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the simulator to prevent it from declaring convergence while the function is limiting,
so externally the limexp() appears identical to exp() because you can never observe
the intermediate, limited, values. The limexp() function was provided in order to
model the IV characteristics of pn junctions, and generally should only be used in that
application as the limexp() function is a more expensive function that exp() both in
terms of time and memory.

The constitutive equation for the diode capacitors is given by

qd = tf*l(res) – 2*cjo*phi*sqrt(1 – V(cap)/phi);
l(cap) <+ ddt(qd);

which implements (19). It is interesting to note that the charge associated with the dif-
fusion capacitance, is a function of the branch current through the resistive part
of the model, I(res). This is the reason why the model was implemented with two
branches, it was important to distinguish this current from the total current. It is also
worth noting that the order in which signals on nodes, terminals, and branches are
accessed is of no consequence. In this model, a current is contributed to I(res) before
it is used to determine the charge in the diffusion capacitance, but it need not be. The
model could have been rewritten as

qd = tf*l(res) – 2*cjo*phi*sqrt(1 – V(cap)/phi);
l(cap) <+ ddt(qd);
l(res) <+ is*(limexp(V(res)/$vt) – 1);

without changing the results at all. In effect, the final value of I(res), or any signal
with continuous-time discipline, is known at the beginning of the analog process and
its value does not change during the evaluation of the process. Furthermore, its value
exactly matches the total amount contributed to it during the evaluation of the analog
process. It is as if the signal is psychic, knowing what its final value will be before
evaluation begins. How does it manage this amazing feat? It’s simple really. The ana-
log process is evaluated iteratively along with all of the analog processes in the sys-
tem, and iteration continues until all of the signals converge to values that satisfy all
of the constitutive equations.

This idea is exploited in the next section to add a series parasitic resistor to the resis-
tive part of the diode.

4.1 Junction Diode with Series Resistor
Consider stripping the capacitance from the model of Listing 11 and replacing it with
a series resistor. The result is given in Listing 12, which implements
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LISTING 12 Verilog-A/MS model for a simple diode with a series resistance.

// Junction diode

ìnclude “disciplines. vams”

module diode (a, c);
parameter real is=10f from (0:inf);
parameter real r=0 from [0:inf);

// saturation current (A)
// series resistance (Ohms)

inout a, c;
electrical a, c;

analog
l(a,c) <+ is*(limexp((V(a,c) – r*l(a,c))/$vt) – 1);

endmodule

This equation is very similar to (15), with the exception that the current i is found on
both sides of the equal sign. As such, this is an implicit equation. In this sense it is
different in an important way from (15), which is an explicit equation or formula. In
(15) one can determine the value of i simply by evaluating the right hand side of the
equation. With (21), that is not possible.

At this point it is important to note that the symbol ‘=’ is used in this book in two dif-
ferent ways. When found in mathematical equations, like (21), it is used to represent
equality, that the value of the expression on its left must be the same as the value of
the expression on its right, with no inherent suggestion about how to make them so.
An equation is simply a statement of fact, not a recipe. When used in Verilog-A/MS
code, ‘=’ represents an assignment, and so the value of the expression on its right side
replaces the value of the variable on its left. Consider the equation,

This equation can be solved by subtracting x from both sides to find that x = 0. Now
consider the following fragment of Verilog-A/MS code,

x = 2x;

In this case, the value of x after the statement cannot be known without knowing what
it was before the statement was evaluated. Say that initially the value of x is 5; after
the assignment statement is evaluated, the value will be 10. Notice that equations are
statements of fact and the order in which they are given is of no consequence, whereas
assignments are operations, and the final result depends on the order in which they are
performed. For example, after

x = 2;
x = 2x;
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the value of x is 4, whereas x would be 2 if these statements were reversed.

In Verilog-A/MS it is the contribution statements that are very much like equations
(contributions use ‘<+’ rather than ‘=’). As such, (21) can be written

l(a,c) <+ is*(limexp((V(a,c) – r*l(a,c))/$vt) – 1);

Notice that I(a,c) is found on both sides of the contribution operator. The underlying
semantics of the language require that a value of I(a,c) be found such that

1. The value of I(a,c) used in the expression on the right side of the contribution oper-
ator is the same as the resolved value of I(a,c) (after all contributions have been
made to it).

2. The value of the expression on the right side of the contribution operator is the
same as the value of the resolved signal on the left side, in this case I(a,c), (again,
after all contributions have been made to it).

Contributions have three characteristics not associated with equations. First, the left
side of a contribution must be a branch signal. Second, if there are multiple contribu-
tions being made to the same branch, the contributions sum. This feature can be used
to make models more modular. For example, if it is desirable to add a leakage to the
diode, it can be easily done simply by appending the following line to the end of the
analog process,

l(a,c) <+ gleak*V(a,c);

Finally, there is directionality associated with the contribution statement that is not
present with equations. This distinction is discussed next.

4.2 Probes and Sources
Listing 13 contains a module that implements a voltage-controlled voltage source
(VCVS). The equation for a voltage-controlled voltage source is

where represents the gain of the source. But this is not a complete description of a
VCVS. There is directionality to a controlled source that is not captured by this equa-
tion alone. What is missing is the equation,

However, this equation is not found in Listing 13. It is not needed because contribu-
tions in Verilog-A/MS innately incorporate directionality. It does this by using the
concept of probes and sources.
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LISTING 13 Verilog-A/MS model for a linear voltage-controlled voltage source.

// Voltage-controlled voltage source
`include “disciplines.vams”

module vcvs (p, n, ps, ns);
parameter real gain=1; // voltage gain (V/V)
output p, n;
input ps, ns;
electrical p, n, ps, ns;

analog
V(p,n) <+ gain*V(ps,ns);

endmodule

In Verilog-A/MS, any signal that is the target of a contribution statement can concep-
tually be considered a source, and any signal used in an expression can be considered
a probe. With the VCVS, both the driven and observed signals are voltages, so the
source is a voltage source and the probe is a voltage probe, as shown in the figure
inset in Listing 13.

If one understands the directional nature of contribution statements, thinking of the
behavioral description as a set of related probes and sources is not necessary. How-
ever, it does allow one to interpret any analog behavioral description as a network, and
many people find that helpful. To do so, there are a few rules that must be understood.

Probes. Any branch, be it explicit or implicit (named or unnamed), is a probe
branch if there is no contribution made to that branch. There are two types of probe
branches, potential probes and flow probes, as shown in Figure 4. A probe branch is a
flow probe if its flow is observed somewhere in the module, otherwise it is a potential
probe. The potential across a flow probe is zero and the flow through a potential
probe is zero. It is not possible for a probe to simultaneously be a potential and flow
probe, and so it is illegal to observe both the potential and flow of a probe branch.
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Sources. Any branch, either explicit or implicit, is a source branch if either the
potential or the flow of that branch is assigned a value by a contribution statement
anywhere in the module. It is a potential source if the branch potential is specified
and is a flow source if the branch flow is specified. A branch cannot simultaneously
be both a potential and a flow source, although it can switch between them, in which
case it becomes a switch branch. To switch a branch to being a potential source,
assign to its potential. To switch a branch to being a flow source, assign to its flow.
This type of branch is useful when modeling ideal switches, ideal diodes, mechanical
stops, etc. Both the potential and the flow of a source branch are accessible for obser-
vation (they can be used in an expression). The models for the various branches are
shown in Figure 5.

It is interesting to note that a potential probe is essentially a flow source where the
contributions to the flow total to zero and a flow probe is essentially a potential source
where the contributions to the potential total to zero.

Examples. The VCVS can be converted to any of the three other basic controlled
sources by replacing

V(p,n) <+ gain*V(ps,ns);

in Listing 13 with one of the following:

Voltage-Controlled Current Source (VCCS)

I(p,n) <+ gain*V(ps,ns);

Current-Controlled Voltage Source (CCVS)

V(p,n) <+ gain*l(ps,ns);
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Current-Controlled Current Source (CCCS)

I(p,n) <+ gain*l(ps,ns);

These probes and sources can be combined to model most any type of component. For
example, consider the resistor of Listing 1 on page 36, from which, the contribution
statement is

V(p,n) <+ r * l(p,n);

The contribution is made to the potential of the branch,
making the branch a potential source branch. The use of
I(p,n) in the expression on the right side then simply
accesses the flow through this potential source branch.

The situation is similar for the conductor of Listing 2 on page 39. Here the contribu-
tion statement is

l(p,n) <+ g * V(p,n);

The contribution is made to the flow of the branch,
making the branch a flow source branch. The use of
V(p,n) in the expression on the right side then simply
accesses the potential through this flow source branch.

An example that involves a switch branch is given in
Section 6.

4.3 Series and Parallel RLC
As an exercise, try to write models for both a series RLC and a parallel RLC using a
single behavioral model for each. Write two versions of each model, one that uses
named branches, and one that does not. The constitutive equation for a series RLC is

and the constitutive equation for the parallel RLC is

One hint, the integration operator in Verilog-A/MS is idt (5§4.6.2p179).

When finished, compare the models you wrote to those given in Listing 14 and
Listing 15. Did you remember to place limits on the parameter values to avoid any
possible case of division by zero? Notice how the use of unnamed branches con-
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strained the formulation of the equations for the individual components, which ulti-
mately resulted in 0 being excluded from the range of several parameters.

LISTING 14 Verilog-A/MS models for a linear series RLC.

// Series RLC

`include “disciplines.vams”

module series_rlc (p, n);
parameter real r=0;
parameter real l=0;
parameter real c=1p exclude 0;
inout p, n;
electrical p, n;

analog begin
V(p,n) <+ r*l(p,n);
V(p,n) <+ l*ddt(l(p,n));
V(p,n) <+ idt(l(p,n))/c;

end
endmodule

// Series RLC

`include “disciplines.vams”

module series_rlc (p, n);
parameter real r=0;
parameter real l=0;
parameter real c=0;
inout p, n;
electrical p, n, i;
branch (p, i) rl, (i, n) cap;

analog begin
V(rl)<+ r*l(rl);
V(rl) <+ l*ddt(l(rl));
l(cap) <+ c*ddt(V(cap));

end
endmodule

LISTING 15 Verilog-A/MS models for a linear shunt RLC.

// Shunt RLC

`include “disciplines.vams”

module shunt_rlc (p, n);
parameter real r=1 exclude 0;
parameter real l=1n exclude 0;
parameter real c=0;
inout p, n;
electrical p, n;

analog begin
l(p,n) <+ V(p,n)/r;
l(p,n) <+ c*ddt(V(p,n));
l(p,n) <+ idt(V(p,n))/l;

end
endmodule

// Shunt RLC

`include “disciplines.vams”

module shunt_rlc (p, n);
parameter real r=0;
parameter real l=0;
parameter real c=0;
inout p, n;
electrical p, n;
branch (p, n) res, cap, ind;

analog begin
V(res) <+ r*l(res);
l(cap) <+ c*ddt(V(cap));
V(ind) <+ l*ddt(l(ind));

end
endmodule
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5 Resistive Port
A resistive port is a component that is used to interface to high frequency circuits. Do
not confuse it with the name that Verilog-A/MS uses to signify a module terminal. A
resistive port combines a voltage source and a resistor, and so can be used as either a
resistive source or a load. The constitutive equations for the resistive port are

where v is the voltage across the port and i is the current through the port. The factor
of 2 in this equation is present to assure that the desired output voltage is achieved
when the port is terminated in its characteristic resistance, r. The resistive port model
is given in Listing 16. This model starts off by including a new file, constants.vams,
which contains preprocessor directives that define useful mathematical and physical
constants. In this case, the value of Boltzmann’s constant, k, is needed, which is
accessed later using `P_K. In this file, names that start with `P_ represent physical
constants and those that start with `M_ represent mathematical constants (5§2.1p152).

LISTING 16 Verilog-A/MS description of a resistive port.

// Resistive port

`include “disciplines.vams”
`include “constants.vams”

module port (p, n);
parameter real r=0 from (0:inf);
parameter real dc=0;
parameter real mag=0;
inout p, n;
electrical p, n;

// port resistance (Ohm)
// DC level into a matched load (V)
// AC magnitude into a matched load (V)

analog begin
V(p,n) <+ r*l(p,n) + 2*dc;
V(p,n) <+ 2*ac_stim(, mag);
V(p,n) <+ white_noise(4*`P_K*$temperature*r, “thermal”);

end
endmodule

This model adds support for small-signal analysis. A small-signal analysis is a partic-
ular form of simulation where the system is first linearized about some operating
point, and then the response to some ‘small’ stimulus is determined. Here the term
small implies that the stimulus is so small that it is unable to excite any nonlinear
behavior. This is the assumption that allows the circuit to be linearized to start the
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analysis. The linearization is performed on all models automatically by the simulator.
However, the act of linearization eliminates all stimuli (adding a stimulus is a nonlin-
ear process). As a result, the small-signal stimulus must be explicitly included in the
models that are to act as small-signal sources. Verilog-A/MS provides special func-
tions for this (5§4.9p189).

There are two kinds of small-signal analyses, AC and noise. In an AC analysis, a
small number of small-signal sources (usually one) are explicitly placed in the circuit
to allow the transfer functions from that source to the outputs to be determined. In a
noise analysis, the stimuli are the internal noise sources that are inherent to most com-
ponents (thermal noise, shot noise, flicker noise, etc.). The port is configured both to
act as a small-signal stimulus for AC analyses, and as a noise source for noise analy-
ses. The ac_stim function takes three arguments and returns 0 except during an AC
analysis whose name matches analysisName, when it returns a signal with the speci-
fied magnitude and phase.

ac_stim( analysisName, magnitude, phase )

The default analysis name is “ac”, magnitude is 1, and phase is 0. In this model, the
default analysis name is used (notice that the first argument is missing), and the mag-
nitude is specified by the module’s ac parameter.

V(p,n) <+ ac_stim(, ac);

For the noise analysis, Verilog-A/MS provides three different noise stimulus func-
tions, white_noise, flicker_noise, and noise_table. The white_noise function produces
noise whose power is independent of frequency. The flicker_noise function produces
noise whose power varies with frequency as where a is a constant. Finally,
noise_table produces noise whose power varies as a piecewise function of frequency.

white_noise( pwr, name )
flicker_noise( pwr, a, name )
noise_table( array, name )

The desired noise power is passed into these functions using the first argument. In the
first two the power is a simple real scalar. In noise_table, one passes in the power as a
function of frequency by providing a vector of real pairs, the first number in each pair
is the frequency and the second is the power. The last argument is the source name. It
is used to identify the noise source in a noise results summary when there are multiple
noise sources in the same instance. Finally, the second argument for flicker_noise is a,
the negative of the exponent of frequency.

The port exhibits thermal noise due to its resistive component:
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It is modeled with

V(p,n) <+ white_noise(4*`P_K*$temperature*r, “thermal”);

As with ac_stim, the white_noise function returns 0 for the analyses where it is not
active. During a noise analysis, the statement produces noise with a power of 4kTr and
a tag of “thermal”.

As an exercise, try adding thermal noise to the resistor of Listing 1 on page 36.

6 Relay
The model for an ideal relay is shown in Listing 17. A relay is an electronically con-
trolled switch. This relay is ideal in the sense that when the relay is closed, there is no
voltage across its contacts, and when it is open there is no current flowing though its
contacts.

LISTING 17 Verilog-A/MS model for an ideal relay.

// Ideal relay
`include “disciplines.vams”

module relay (p, n, ps, ns);
parameter real thresh=0;
output p, n;
input ps, ns;

// threshold (V)
// the contacts
// the coil

electrical p, n, ps, ns;

analog begin
@(cross( V(ps,ns) – thresh, 0 ))

if (V(ps,ns) > thresh)
V(p,n) <+ 0;

else
l(p,n) <+ 0;

end
endmodule

The analog process begins with an event statement (5§6.8p204). In this statement the
cross function creates an event when the value of its first argument goes through zero
in the direction specified by the second argument. The second argument, being zero,
indicates that events should occur if the crossing occurs in either direction. The other
choices are +1 and –1, meaning that events should occur only on positive and negative
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going crossings respectively. Any other value prevents the events from being gener-
ated at all.

The event statement has the following form,

@(event expression)
event clause (executed when events occur)

The event that is generated by the cross function is caught by the @ statement and
causes the event clause (or the body of the event statement) to be executed. In this
case, the event clause is empty, and so it would appear as if the event statement is not
affecting the behavior of the model. However, it is important to realize that besides
returning an event when it detects a valid threshold crossing, the cross function also
causes the simulator to place an evaluation point very close (and just after) the thresh-
old crossing. In this model, that has the effect of causing the relay to carefully resolve
the time when it opens and closes.

It is relatively common in analog processes to have event statements with empty event
clauses. Notice that when this occurred in this module, the semicolon that terminates
the event statement was placed on the line below the event expression and indented.
This is a good practice because it makes it obvious that the event statement has an
empty event clause. Contrast the way the analog process was formatted in Listing 17
to the way it is formatted below.

analog begin
@(cross( V(ps,ns) – thresh, 0 ));
if (V(ps,ns) > thresh)

V(p,n) <+ 0;
else

l(p,n) <+ 0;
end

A casual glance at this version leads one to think that the if statement is the event
clause. This version is somewhat misleading and so should not be used.

The relay model also introduces if statements or conditionals, and demonstrates the
use of a switch branch. There are two forms of the if statement,

if (condition)
if clause (executed if condition is true)

or

if (condition)
if clause (executed if condition is true)

else
else clause (executed if condition is false)
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The condition is an expression that can evaluate either to an integer or a logical value.
If the result is true, or nonzero, then the if clause is executed. If the result is false, or
zero, then the else clause is executed if it exists. If these clauses consist of more than
one statement, they should be embedded between the begin and end keywords. In this
example, the if clause contains a contribution statement that sets the voltage differ-
ence between the contacts, p and n, to zero and the else clause sets the current flow
through the contacts to zero, making (p,n) a switch branch. If a potential is contrib-
uted to a branch at times, and at other times nothing is contributed, the branch is still
considered a switch branch. As such, the analog process of the ideal relay could be
shortened to

analog begin
@(cross( V(ps,ns) – thresh, 0))

if (V(ps,ns) > thresh)
V(p,n) <+ 0;

end

However, the converse is not true. If a flow is contributed to a branch at times, and at
other times nothing is contributed, the branch is considered a flow branch.

6.1 Non-Ideal Relay
The model for a non-ideal relay is shown in Listing 18. The relay is non-ideal in it
exhibits both an on resistance and an off resistance.

This model differs from the one in Listing 17 in that the on and off resistance are
passed as parameters. Notice that the model is written in such a way that the on resis-
tance may be zero and the off resistance may be infinite, and that this is the case by
default. So, by default, this model is ideal. This is possible because the contacts are
modeled using a switch branch.

In Listing 19 a non-ideal relay is modeled without using a switch branch. In this case
the contact resistance is not allowed to be zero so the relay cannot be ideal.

Notice the call to the discontinuity function in the body of the @ block (5§5.1.2p191).
This function is used to announce discontinuities in the model to the simulator. In this
case, it is announcing the discontinuity that occurs in the resistance of the contacts
when the contacts open or close (when the input voltage crosses the threshold in
either direction). The argument is the order of the discontinuity, with a value of i rep-
resenting a discontinuity in the derivative of the constitutive relations for the com-
ponent with respect to either a signal value or time. Thus, passing a 0 implies a break
in the model and passing a value of 1 implies a kink.
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LISTING 18 Verilog-A/MS model for a relay.

// Relay
`include “disciplines.vams”

module relay (p, n, ps, ns);
parameter real thresh=0;
parameter real ron=0 from [0:inf);
parameter real goff=0 from [0:/1ron);
input ps, ns;
electrical p, n, ps, ns;

analog begin
@(cross( V(ps,ns) – thresh, 0 ))

if (V(ps,ns) > thresh)
V(p,n) <+ ron*l(p,n);

else
l(p,n) <+ goff*V(p,n);

end
endmodule

// threshold (V)
// on resistance (Ohms)
// off conductance (Siemens)

LISTING 19 Verilog-A/MS model for a non-ideal relay.

// Relay
`include “disciplines.vams”

module relay (p, n, ps, ns);
parameter real thresh=0;
parameter real ron=0 from (0:inf);
parameter real goff=0 from [0:/1ron);
input ps, ns;
electrical p, n, ps, ns;

analog begin
@(cross( V(ps,ns) – thresh, 0 ))

$discontinuity(0);

if (V(ps,ns) > thresh)
l(p,n) <+ V(p,n)/ron;

else
l(p,n) <+ goff*V(p,n);

end
endmodule

// threshold (V)
// on resistance (Ohms)
// off conductance (Siemens)
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The discontinuity function could have also been employed in Listing 17 and
Listing 18, but they are not needed in these cases because the discontinuity is caused
by a switch branch. Any change in the overall state of a switch branch is assumed by
the simulator to produce an order 0 discontinuity (regardless of whether it does or
not).

6.2 Ideal Mechanical Stop
Another use for the switch branch is to model ideal barriers such as ideal diodes, or
the mechanical equivalent, an ideal stop. The model for an ideal stop is given in
Listing 20.

LISTING 20 Verilog-A/MS model for an ideal mechanical stop.

// Ideal mechanical stop
`include “disciplines.vams”

module barrier (p, n);
inout p, n;
kinematic p, n;

analog begin
@(cross((Pos(p,n) + F(p,n)), 0))

if ((Pos(p,n) + F(p,n)) > 0)
Pos(p,n) <+ 0;

else
F(p,n) <+ 0;

end
endmodule

An ideal stop is a component that allows unrestricted motion up to a point, but does
not allow motion beyond that point. Assume that point has a position of 0. Then the
core of the stop model is

if (cond)
Pos(p,n) <+ 0;

else
F(p,n) <+ 0;
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The modeling problem then becomes, what does one use for the
condition. Using just the position or force alone results in numeri-
cal difficulties. This becomes obvious if one looks at the position
versus force curve for the stop. Deciding whether the stop is active
or not based solely on position is equivalent to dividing this plane
in half, with the stop being active when in the right half of the
plane. However, the curve never really leaves the right half of the
plane; at best it follows its border. Given the tolerances associated with the simulation
of nonlinear systems, such an approach is not robust. So instead, in this model the
plane is cut on a diagonal as shown where the stop is active above the diagonal. Thus
the condition becomes Pos(p,n) + F(p,n)) > 0. While this appears a bit strange because
it combines position and force, it is more robust than using either position or force
alone. The core of the model becomes

if (Pos(p,n) + F(p,n)) > 0)
Pos(p,n) <+ 0;

else
F(p,n) <+ 0;

To accurately resolve the points in time where the stop transitions between the active
and inactive regions, a cross event is added as in the relay.

@(cross((F(p,n) + Pos(p,n)), 0))

Notice that the event statement has no action associated with it. It is present simply
because the act of detecting the event will cause the simulator to place a time point
very near the event, which will result in the transition being carefully resolved.

One could further improve this model by scaling the signals to make them consis-
tently sized. To do so, one uses hierarchical names (5§9.4p230) to access the absolute
tolerances associated with the signals (5§3.1.2p168), and the abstols are used to scale
the force so that it is the same relative size as the position. Then the abstol for position
is passed into the cross function to be used as its tolerance (5§6.8.3p206).

real sum;

analog begin
sum = Pos(p,n) + F(p,n)*(p.potential.abstol/p.flow.abstol);

@(cross(sum, 0, , p.potential.abstol))
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if (sum > 0)
Pos(p,n) <+ 0;

else
F(p,n) <+ 0;

end

6.3 Ideal Diode

As an exercise, write a model for an ideal diode. When finished, compare what you
wrote to Listing 21

LISTING 21 Verilog-A/MS model for an ideal diode.

// Ideal diode
ìnclude “disciplines.vams”

module diode (a, c);
inout a, c;
electrical a, c;

analog begin
@(cross((V(a,c) + l(a,c)), 0))

if ((V(a,c) + l(a,c)) > 0)
V(a,c) <+ 0;

else
l(a,c) <+ 0;

end
endmodule

7 Voltage-Controlled Oscillator
A voltage-controlled oscillator (VCO) produces an output signal whose frequency is
proportional to an input signal (generally a voltage, but it could also be a current),

where K is the VCO gain given in units of Hertz per volt (or amp) and is often referred
to as The best way to model a VCO in a continuous-time setting is to integrate
the input signal to compute the phase of the output signal,
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and then produce the output signal from the phase. In this model, the output will be a
sinusoid that is produced by passing the phase through the sine function,

The Verilog-A/MS model that implements these equations is given in Listing 22. A
new aspect of this model is that the input and output ports are declared using the volt-
age discipline.

voltage out, in;

The voltage discipline is defined in disciplines.vams (5§2.4p159) to be
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LISTING 22 Verilog-A/MS model for a sinusoidal VCO.

// Voltage-controlled oscillator

`include “disciplines.vams”
`include “constants.vams”

module vco (out, in);
parameter real Vmin=0;
parameter real Vmax=Vmin+1 from (Vmin:inf);
parameter real Fmin=1 from (0:inf);
parameter real Fmax=2*Fmin from (Fmin:inf);
parameter real ampl=1;

// minimum input voltage (V)
//maximum input voltage (V)
//minimum output freq (Hz)
//maximum output freq (Hz)
// output amplitude (V)

input in; output out;
voltage out, in;
real freq, phase;

analog begin
//compute the freq from the input voltage
freq = (V(in) – Vmin)*(Fmax – Fmin) / (Vmax – Vmin) + Fmin;

//bound the frequency (this is optional)
if (freq > Fmax) freq = Fmax;
if (freq < Fmin) freq = Fmin;

//phase is the integral of the freq modulo
phase = 2*`M_PI*idtmod(freq, 0.0, 1.0, –0.5);

//generate the output
V(out) <+ sin(phase);

//bound the time step
$bound_step(0.1/ freq);

end
endmodule
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discipline voltage
potential Voltage;

enddiscipline

Notice that this discipline is declared without a flow, making it a signal-flow disci-
pline (as opposed to a conservative discipline), and the VCO a signal-flow model.
Signal-flow models are generally used for more abstract models such as this. It is
more natural to use the voltage discipline than the electrical discipline because in this
model there is no mention of current (electrical’s flow). Signal-flow models can be
freely connected to conservative models, and so there is no reason not to simplify a
model by using signal-flow disciplines if possible.

Also notice that the output is listed before the input on the terminal list. It is a general
Verilog (and SPICE) convention to place the outputs on the port list before the inputs.
While it is not necessary to follow this convention, doing so will make your models a
bit easier to use.

The parameter declarations are similar to those presented earlier, except that the
defaults and limits for some of the parameters are defined in terms of previously
defined parameters (5§2.3p157).

parameter real Vmin=0;
parameter real Vmax=Vmin+1 from (Vmin:inf);
parameter real Fmin=1 from (0:inf);
parameter real Fmax=2*Fmin from (Fmin:inf);

The default value and lower bound for Vmax is defined in terms of the value specified
for Vmin. Thus if Vmin is given to be –0.5, then the default value for Vmax would be
0.5 and its lower bound would be –0.5. Similarly, the default value and lower bound
for Fmax is defined in terms of the value specified for Fmin. These parameters are
used to calculate and to bound the minimum and maximum output frequency.

The file constants.vams supplies `M_PI (5§2.1p152), which is replaced by the value of
and is used in

phase = 2*`M_PI*idtmod(freq, 0.0, 1.0, –0.5);

Verilog-A/MS provides the special function, idtmod, that is used when modeling
VCOs. It combines the operation of integration with respect to time with a modulus
operation, and is sometimes referred to as a circular integrator. The idtmod function
takes five arguments of which all but the first are optional (5§4.6.3p179),

itdmod( integrand, initial condition, modulus, offset, tolerance )

and returns
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where y is the return value, x is the integrand, is the initial condition, m is the mod-
ulus, and b is the offset. In other words, the output value y(t) satisfies

where k(t) is an integer that is chosen so that as shown in Figure 6. In
this situation this function is preferred over idt, the conventional integration operator,
because the output remains bounded, keeping the subsequent sin function in its accu-
rate range. Even if a sinusoidal output is not desired, it is generally easier to produce
the desired output wave shape with the bounded output of idtmod than if idt were
used. Besides keeping its output bounded, the idtmod function is implemented in such
a way that its internal state variable is also bounded, and so avoids tolerance and
round-off problems.†

† An additional benefit of using the idtmod operator in the VCO is that it avoids a compatibil-
ity problem with RF simulators such as SpectreRF. When the input is a constant, the idtmod
signals (both its internal state and its output) are periodic, whereas the signals associated
with the idt operator are linear ramps. The RF simulator requires periodic solutions, which
the idtmod operator provides and the idt operator does not.
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One last new feature of Verilog-A/MS that is being used in this model is the
$bound_step system function (5§5.1.1p190). It is a simulator directive, meaning that
it affects the behavior of the simulator and not the behavior of the model. It simply
directs the simulator to take time steps no larger than its argument. Be careful to
assure the argument is not needlessly small, which would make the simulator run
more slowly than necessary. Controlling the time step is required by this model
because it produces changes in its output when there is no corresponding change in its
input. As such, it has the responsibility to coordinate with the simulator to assure that
the simulator does not simply miss the changes. For example, consider a model that
produces a 1 GHz sine wave when the simulator has chosen to take 1 ns time steps. In
this case the sine wave aliases to DC as a result of subsampling, and so the simulator
would not actually notice that the sine wave was present, and so would not know to
shrink its time step in order to follow it. Changes in the output generally take two
forms, either there is an abrupt change or the change is smooth and continuous.
Abrupt changes are generally triggered by the timer function (5§6.8.2p206), and so
Verilog-A/MS is usually aware of when the change occurs and notifies the simulator
so that it can choose its evaluation points accordingly. However, in the case of smooth
changes, it is unable to provide the simulator any guidance and so it is up to the author
of the model to explicitly provide the information the simulator needs, and that is
done using the $bound_step function. Generally, it is necessary to use $bound_step
when modeling autonomous systems (oscillators) with smoothly varying outputs,
which of course is a perfect description of this VCO. Here, the time step is con-
strained to be no larger than one tenth the length of a period of the VCO’s output.

8 Periodic Sample and Hold
A periodic sample and hold samples its input at
evenly spaced points and produces an output
that equals the value of the input at the most
recent sample point.

where T is the sample period and n is the largest
integer that is smaller than t/T, An implementation is shown in
Listing 23.

The act of sampling is an example of an event. It is an action that occurs instanta-
neously (it has no duration). At least, that is the way it will be modeled. In this case,
the sampling is periodic, and so represents a stream of spontaneous events. This activ-
ity is realized with

77



Chapter 3  Analog Modeling

LISTING 23 Verilog-A/MS model for an ideal periodic (self-clocked) sample and hold.

// Self-clocked (periodic) sample and hold
`include “disciplines.vams”

module sh (p, n, ps, ns);
parameter real period=1 from (0:inf);
parameter real toff=0 from [0:inf);
output p, n; voltage p, n;
input ps, ns; voltage ps, ns;
real save;

// sampling period (s)
// offset time for sampling (s)
// output port
// input port

analog begin
//Sample the input
@(timer(toff, period) or initial_step) begin

save = V(ps,ns);
$discontinuity(0);

end

// Produce the output
V(p,n) <+ save;

end
endmodule

@(timer(toff, period) or initial_step)
save = V(ps,ns);

This event statement is triggered by events produced by either the timer function
(5§6.8.2p206) or by initial_step (5§6.8.1p205). The timer function produces an event
at the (absolute) time given by its first argument, and if its second argument is present,
it will produce subsequent events with a period equal to the value of the second argu-
ment. In other words, events are produced at where is the value of the
first argument, T is the value of the second, and n = 0, 1, 2, .... The second source of
events is initial_step, a built-in event source that produces a single event at the begin-
ning of the simulation time interval. It is generally used for initialization, and this case
initializes the sample and hold. The events produced by these event sources are com-
bined using the or keyword. When an event occurs, the event statement executes its
event clause, in this case a statement that assigns the value of the input to a local vari-
able, save.

It is important to recognize that the value of the save variable is set only when events
occur, but its value is used at all points in time. As such, the variable must be able to
remember its value. All Verilog-A/MS variables have this ability, but not all use it.
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Those that retain their value from a previous point in time are referred to as state vari-
ables.

The event clause also contains a simulator directive, discontinuity (5§5.1.2p191). Like
$bound_step, its presence indicates that something is occurring that the simulator
should be aware of this. In this case, the discontinuity statement announcing that the
output waveform produced by the module contains a discontinuity. The argument
indicates the order of the discontinuity. In this case, the argument is 0, indicating that
the output waveform itself is discontinuous (you could not trace the waveform with
your finger without raising your finger and moving it at the discontinuity). If the value
of the argument is k with k > 0, it indicates that the discontinuity occurred in the
derivative. Thus, if k = 1, the discontinuity occurs in the slope of the waveform (it has
a noticeable kink, but does not jump). The simulator uses this information to optimize
the operation of its internal algorithms.

8.1 Smoothing the Output
Rather than producing models whose outputs
jump discontinuously, it is often prudent to
smooth the outputs to eliminate the abrupt
jumps. This is particularly true if the output of
the module could drive a dynamic component
like a capacitor or inductor, which often behaves badly when faced with abruptly dis-
continuous waveforms. It is for this reason that the sample and hold module was
rewritten so as to eliminate the jumps, as shown in Listing 24.

The magic is performed by a new function, transition, which is often referred to as the
transition filter (5§4.6.4p180).

V(p,n) <+ transition(save, td, tt);

The transition function takes four arguments,
the first being a piecewise constant waveform.
It is this waveform that will be smoothed and
transferred to the output. Be sure that this first
argument is constant valued except at isolated
points where it jumps abruptly. The transition
filter does not react well when this argument varies smoothly as a function of time.
The remaining arguments are optional. The second is the delay or the time it takes for
the transition to pass through the filter. The third and fourth arguments specify the
transition time for the transition on the output, the third being the rise time (used
when the output is becoming more positive) and the fourth being the fall time. If the
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LISTING 24 Verilog-A/MS model for a periodic (self-clocked) sample and hold.

// Self-clocked (periodic) sample and hold
`include “disciplines.vams”

module sh (p, n, ps, ns);
parameter real period=1 from (0:inf);
parameter real toff=0 from [0:inf);
parameter real td=0 from [0:inf);
parameter real tt=period/100 from [0:inf);
input ps, ns; voltage ps, ns;
output p, n; voltage p, n;
real save;

analog begin
// Sample the input
@(timer(toff, period) or initial_step)

save = V(ps,ns);

// sampling period (s)
// offset time for sampling (s)
// delay from sampling to output (s)
// duration of output transitions (s)
// input port
// output port

// Produce output with well-controlled transitions
V(p,n) <+ transition(save, td, tt);

end
endmodule

fourth is missing, the fall time is taken to be the same as the rise time. If the third is
missing or zero, it is taken to be the value of the `default_transition compiler directive.

Even though the first derivative of the output waveform is discontinuous, this module
does not need a discontinuity statement as the last one did because the transition func-
tion takes responsibility for notifying the simulator of the discontinuities that it pro-
duces. In addition, it directs the simulator to place time points at the corners of the
transition (in this case, at td and td+tt). However, the transition filter behaves a bit dif-
ferently if the transition time, tt, is specified to be zero. In this case the transition time
actually used by the filter is the one specified in the currently active `default_transition
compiler directive, but no attempt is made to resolve the trailing corner of the transi-
tion.

9 Time Interval Measurement
When constructing test benches it is often useful to be able to accurately measure the
timing of events such as delays. An example of that is given here in the form of a time
interval measurement. It monitors two signals, start and stop, and measures the time
between when start and stop cross a given threshold,

80

Chapter 3  Analog Modeling
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where and are the time at which start and stop cross the threshold. An estimate of
the mean time interval is computed using,

The time interval measurement is implemented in Listing 25. The first aspect of this
model that is worthy of comment is the declaration for the dir parameter.

parameter integer dir=1 from [–1:1] exclude 0; // dir=1 for rising edges
// dir=–1 for falling edges

The dir parameter is used to specify whether the module should time rising or falling
edges of the signals on start and stop. It constrains the valid choices to only –1 and +1
by setting the parameter type to integer, setting the range to include all integers
between –1 and +1, and then finally excluding 0 from the range (5§2.3p157).

This model has two modes, unarmed and armed. It initially starts unarmed and is
armed when a valid threshold crossing is detected on the start input. The time of that
threshold crossing is measured and stored in t0. That task could be accomplished by
the following code,

t0 = last_crossing(V(start) – thresh, dir);

The last_crossing function monitors its first argument and returns the time that it last
crossed 0 in the specified direction (5§4.7.2p188). The simulator executing the model
only evaluates the model at discrete points in time, and so last_crossing uses interpo-
lation to estimate when the crossing occurred. If used on its own, it is not likely to be
very accurate.

Unlike last_crossing, cross coordinates with the simulator to assure that the simulator
places an evaluation point very near the threshold crossing. So one could use the fol-
lowing code in place of the code given above,

@(cross(V(start) – thresh, dir)) begin
armed = 1;
t0 = $abstime;

end
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LISTING 25 Verilog-A/MS model that measures and saves the time interval between
transitions on two signals.

`include “disciplines.vams”

module time_interval_measurement (start, stop);
parameter real thresh=0; // threshold (V)
parameter integer dir = 1 from [–1:1] exclude 0;

// 1 for rising edges, –1 for falling
input start, stop;
voltage start, stop;
integer count, armed;
real t0, t1, sum, mean;

analog begin
// sense and record the start of the interval
t0 = last_crossing(V(start) – thresh, dir);
@(cross(V(start) – thresh, dir))

armed = 1;

// sense and record the end of the interval
t1 = last_crossing(V(stop) – thresh, dir);
@(cross(V(stop) – thresh, dir)) begin

if (armed) begin
armed = 0;
count = count +1;
sum = sum + (t1 –t0);

end
end

// produce the final report at end of simulation
@(final_step) begin

$strobe(“time interval measurements = %d.\n”, count);
if (count) begin

mean = sum / count;
$strobe(“mean time interval (est)= %g.\n”, mean);

end else
$strobe(“Could not measure time interval.\n”);

end
end

endmodule
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In this case the time of the crossing is recorded by evaluating
$abstime in the event clause ($abstime evaluates to the current
value of time as a real number (5§4.5.1p175)). While this
would be more accurate than using last_crossing alone, its
accuracy is not as good as it could be because the simulator
places the point where the event clause is evaluated slightly
after the threshold crossing to assure that the crossing actually
occurs. The evaluation point is guaranteed to fall within a box whose size is specified
using optional tolerance parameters. and are the optional third and fourth
parameters to the cross function.      is an absolute tolerance given in terms of time,
and is the same except given in terms of the value of the signal (the first argu-
ment). It is possible to increase the accuracy of this approach by specifying the toler-
ances. Generally specifying is sufficient; however there are limits to how tight the
tolerances can be before they become impossible for the simulator to satisfy.

For the best accuracy and efficiency, it is best to combine the two approaches given
above,

t0 = last_crossing(V(start) – thresh, dir);
@(cross(V(start) – thresh, dir))

armed = 1;

In this way the last_crossing function benefits from the cross function causing the
simulator to place an evaluation point very near the threshold crossing. Together, they
are considerably more accurate that either apart. And if the accuracy of the above is
not sufficient, one can tighten the tolerances on the cross function.

One might wonder why the last_crossing function is not placed within the event
clause of the @cross statement. After all, its return value is only used in within the
clause, and doing so would seem to make the model more efficient as the
last_crossing function would only be evaluated at the threshold crossings and not on
every simulator evaluation point. However it is important to realize that last_crossing
is not a simple scalar function like sqrt or sin. It must monitor its input over time in
order to determine that a crossing has occurred and precisely when it occurs. If it were
contained in the event clause, it would only be able to observe its inputs at isolated
points in time and so would not know when the crossings occurred, or even if they had
occurred. As such, there are constraints on where a last_crossing function can be
used, and it is not the only function or operator that is similarly constrained
(5§4.6p177). These restrictions are discussed further in Section 10.

This model collects data through out the simulation interval; and at the end analyzes
the data and writes it to the screen. It uses a built-in event named final_step to prop-
erly identify the end of the simulation interval (5§6.8.1p205). Within the event clause,
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$strobe is used to write the results to the screen. The strobe function is very much like
the printf function in the C programming language (5§5.2.1p192). The first argument
is a string, which is printed after the percent codes are replaced by the subsequent
arguments. For example,

$strobe(“delay measurements = %d.\n”, count);

prints the string “delay measurements = 100” where ‘%d’ was replaced by the value
of count, here assumed to be 100. The d in ‘%d’ indicates that the argument should be
formatted using a decimal notation. The ‘\n’ is an escape sequence that ends the line
(5§2.1p152).

10 Analog to Digital Converter
An analog-to-digital converter (ADC) is a component that takes a continuous-value
signal at its input and converts it to an integer after appropriate scaling. The integer is
produced in the form of a binary number on a bus. There are many different types of
ADCs, each with different characteristics. A simple Nyquist converter is given in
Listing 26. It is a clocked converter that produces an output on each clock edge with-
out latency.

This model uses a bus, or vector port, to output its result (5§2.5p164). The bus is
declared with

output [0:bits–1] out;
voltage [0:bits–1 ] out;

The first line declares the direction of the port, which is required of all ports. The sec-
ond associates the voltage discipline with the port, which is needed because the port is
accessed from within the behavioral part of the model. The port is declared as a bus
by giving the limits of the indices for the individual members of the array. In this case,
the bus consists of members out[0], out[1], ..., out[bits–1]. Since bits is used in the
declaration of the out, it must be declared first. This module also declares an integer
vector,

integer result[0:bits–1];

As with the port, this defines an array that consists of the members result[0], result[1],
..., result[bits–1]. This module also declares a new type of variable,

genvar i;

A genvar is a restricted integer variable that is used as an index in for loops
(5§2.2p155). It is not necessary to use a genvar as an index to a for loop, but doing so
acts to constrain the behavior of the loop, making it possible to include operators in
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LISTING 26 Verilog-A/MS model for an N-bit analog-to-digital converter.

// N-bit Analog to Digital Converter
`include “disciplines.vams”

module adc (out, in, clk);
parameter integer bits = 8 from [1:24];
parameter real fullscale = 1.0;
parameter real td = 0;
parameter real tt = 0;
parameter real vdd = 5.0;
parameter real thresh = vdd/2;

// resolution (bits)
// input range is from 0 to fullscale (V)
// delay from clock edge to output (s)
// transition time of output (s)
// voltage level of logic 1 (V)
// logic threshold level (V)

parameter integer dir = 1 from [–1:1] exclude 0;
// 1 for rising edges, –1 for falling

input in, clk;
output [0:bits–1] out;
voltage in, clk;
voltage [0:bits–1] out;
real sample, midpoint;
integer result[0:bits–1];
genvar i;

analog begin
@(cross(V(clk)–thresh, +1) or initial_step) begin

sample = V(in);
midpoint = fullscale/2.0;
for (i = bits – 1; i >= 0; i = i – 1 ) begin

if (sample > midpoint) begin
result[i] = vdd;
sample = sample – midpoint;

end else begin
result[i] = 0.0;

end
sample = 2.0*sample;

end
end

for (i = 0; i < bits; i = i + 1) begin
V(out[i]) <+ transition(result[i], td, tt);

end
end

endmodule

the loop that would otherwise find the loop inhospitable. In particular, a genvar vari-
able can only be assigned within the for loop control section (not within the body of
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the for loop). In addition, assignments to a genvar variable can consist only of expres-
sions of static values: the expressions can consist of operations on parameters, literals,
and other genvar variables. These restrictions result in the bounds of the loop being
static. As such, they are known before the simulation begins and they cannot change
during the simulation. Conceptually, this allows the loop to be unrolled in advance.

The genvar variable i is used as the index in the loop

for (i = 0; i < bits; i = i + 1) begin
V(out[i]) <+ transition(result[i], td, tt);

end

Notice that the loop iterates through i = 0, 1, ..., bits– 1, where bits is a constant.
Thus, this loop is equivalent to

V(out[0]) <+ transition(result[0], td, tt);
V(out[1]) <+ transition(result[1], td, tt);

V(out[bits–1]) <+ transition(result[bits–1], td, tt);

In this way, each iterate of the loop gets its own transition filter. The transition filter is
an analog operator, meaning that it maintains a history of its argument so that the out-
put of the filter can depend on past values of its input. As such, it is important that
there be one transition filter for each signal, or in other words, one transition filter for
each iterate of the loop. Without the restrictions imposed on the loop by the genvar
index, it would not be possible to statically associate the filters with their inputs and
outputs. For reasons that are more difficult to explain, from within analog processes
any access to the analog signals in busses also must be statically associated, and so
can only be included in loops that are restricted by having a genvar index. This is true
regardless of whether the signals are being observed or driven.

The remainder of the model is enclosed in an event clause that is triggered by the
clock edge. When triggered, it samples the input and then enters a loop that sequen-
tially determines the value of each bit, from most significant to least. The bit is set
high if the sample is above the midpoint. In this case, the sample is reset to be the dif-
ference between its original value and the midpoint. Otherwise the bit is set low. In
either case, the value of the sample is doubled and the procedure repeats to determine
the value of the next most-significant bit, and the process continues until all of the val-
ues of the bit values are known and stored in results. All of this occurs as the clock
signal passes through its threshold. At all other times, the bit values stored in the
results vector are passed to the out vector through the transition filters, which are
responsible for adding the desired delay and smoothing the output transitions.
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11 Digital to Analog Converter
A digital-to-analog converter (DAC) performs the inverse of the operation performed
by an ADC; it converts an N-bit binary integer into a real-valued signal. An imple-
mentation is given in Listing 27.

LISTING 27 Verilog-A/MS model for an N-bit digital-to-analog converter.

// N-bit Digital to Analog Converter
`include “disciplines.vams”

module dac (out, in, clk);
parameter integer bits = 8 from [1:24];
parameter real fullscale = 1.0;
parameter real td = 0;
parameter real tt = 0;
parameter real vdd = 5.0;
parameter real thresh = vdd/2;

// resolution (bits)
// output range is from 0 to fullscale (V)
// delay from clock edge to output (s)
// transition time of output (s)
// voltage level of logic 1 (V)
// logic threshold level (V)

parameter integer dir = 1 from [–1:1] exclude 0;
// 1 for rising edges, –1 for falling

output out;
input clk;
input [0:bits–1] in;
voltage out, clk;
voltage [0:bits–1] in;
real aout;
integer weight;
genvar i;

analog begin
@(cross(V(clk) – thresh, dir) or initial_step) begin

aout = 0;
weight = 2;
for (i = bits – 1; i >= 0; i = i – 1 ) begin

if (V(in[i]) > thresh) begin
aout = aout + fullscale/weight;

end
weight = weight*2;

end
end
V(out) <+ transition(aout, td, tt);

end
endmodule
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This introduces nothing that is conceptually new. Like the ADC, it monitors the clock
and triggers an event clause when the clock passes through the threshold in the speci-
fied direction. At this time, an algorithm is run that scans through the bits, determines
their weight, and accumulates that weight to the eventual output, aout, if the bit is set
high. At all other times, aout is passed to the output through a transition filter, which
adds any needed delay and smoothes the transitions. The for loop in the event clause
contains an indexed access to the analog signals on a bus, and so uses a genvar index.

12 Lossy Inductor
A model for an inductor that is accurate over a broad range of frequencies is shown in
Figure 7. Component H in the model represents the skin-effect loss. The impedance
of the skin effect is given by,

This model involves a non-integer power for f and so is a distributed model. In other
words, Z( f ) cannot be exactly represented using a finite number of poles and zeros
and the model cannot be implemented exactly by combining a finite number of
lumped components (resistors, capacitors, and inductors).

An impedance of is approximated over a finite range of frequencies with an
equal number of real poles and zeros alternating and evenly spaced in a logarithmic
sense over that range, as shown in Figure 8. The range of the approximation is from
to with the impedance flattening out at frequencies outside of this range. The range
of frequencies over which skin effect must be accurately modeled can be determined
by examining its contribution to the overall impedance of the inductor. The imped-
ance of a representative inductor is shown in Figure 9. Notice that the impedance is
separated into its real and imaginary parts (the resistance and the reactance). The
resistance represents the loss. It is important to accurately model the resistive portion
in the operating frequency range even where the reactive portion is much larger
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because it determines the Q of resonators and because designers sometimes use tun-
ing to cancel out the reactive portion of the inductor.

Because the operating frequency range is not known a priori, we must model the skin
effect over the range of frequencies where it is significant. The low frequency bound,

is chosen to be the frequency where the impedance of the skin effect first domi-
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nates over Since our lumped approximation of skin effect naturally flattens out at
low frequency, will be combined with H to form as shown in Figure 10. Notice

that the structure of the model was modified slightly to accommodate the combining
of and H. Since is always much larger than the difference is not expected to
be significant.

The low frequency bound, is the frequency where the resistance (the real part) of
the skin effect begins to dominate over

The high frequency bound, is chosen to be the resonant frequency of because
above this frequency the capacitive path through the inductor dominates over the
inductive path, and so dominates over H,

Placing at the resonant frequency L and does act to increase the modeled Q of
this parasitic resonance, but does not significantly affect the Q in the operating fre-
quencies of the inductor.

The number of lumps, n, is chosen to provide a sufficient level of accuracy. The larger
n, the closer the impedance of the lumped approximation matches Typically,
using 1½ lumps per decade of frequency range gives a good fit (but 1 lump per decade
is often sufficient),

The frequency span of one lump is then
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From Figure 8, the zero and pole frequencies are simply

with i ranging from 1 to n. For the inductor shown in Figure 9, impedance of the
model for just the skin effect is shown in Figure 11. In this example, and

It is clear that accuracy degrades at the ends of the range. If accuracy at
the ends is important, consider lowering and/or raising by and order of magni-
tude.

A Verilog-A/MS model of the inductor itself implements Figure 10 and is given in
Listing 28. It uses (38) and (39) to compute and for the skin effect model. The
parameter esr specifies and rcp specifies

Listing 29 shows the module that implements the skin effect model. It is based on
(40), (41), (42), and (43). The model starts by computing the location of the poles and

91

12 Lossy Inductor



LISTING 28 Verilog-A/MS model of the lossy inductor.

`include “discipline.vams”
`include “constants.vams”

module lossy_ind (t1, t2);
parameter real esr=0.01 from (0:inf);
parameter real rcp=1.0 from (0:inf);
parameter real cp=10f from (0:inf);
parameter real l=1 n from (0:inf);
parameter real h=70K from (1:inf);

// equivalent series resistance (Ohms)
// series resistance of shunt C (Ohms)
// shunt capacitance (F)
// inductance (H)
// magnitude of skin effect at 1Hz (Ohms)

electrical t1, t2;
inout t1, t2;
electrical n1, n2;

resistor #(.r(rcp)) Rp (n2, t2);
skin_effect #(.r0(esr), .f0(2*esr*esr*h*h), .f1(1/(2*`M_PI*sqrt(l*cp)))) Hr(t1, n1);
capacitor #(.c(cp)) Cp (t1, n2);
inductor #(.l(l)) L(n1, t2);

endmodule

zeros needed to achieve the transfer function shown in Figure 8, and then implements
the transfer function using the laplace_zp function.

This model starts by declaring two real arrays. These arrays will hold the poles and
zeros for the Laplace transform function that implements the module’s transfer func-
tion. The array index bounds are specified by expressions, the terms of which are
either constants or parameters; a requirement when declaring arrays.

The analog process begins with an event statement that is triggered on the initial step
of any static analysis (5§6.8.1p205). In this case, initial_step takes an argument,
“static”, that indicates which analysis, or class of analyses, must be active for the
event to be generated. In other words, in this case, the initial_step is only produced on
the first step of a static analysis. The term static refers to any equilibrium point calcu-
lation, including a DC analysis as well as those that precede another analysis, such as
the DC analysis that precedes an AC or noise analysis, or the initial condition analysis
that precedes a transient analysis.

The initial_step event triggers the calculation of the poles and zeros used by the
Laplace filter. Since the poles and zeros never change, they only need to be calculated
once at the beginning of the analysis. As such, the initial_step event is used to
increase the efficiency of the model. Without it, the poles and zeros would be recalcu-
lated at every time point, a substantial waste of time.
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LISTING 29 Verilog-A model of the skin effect.

`include “discipline. vams”
`include “constants. vams”

module skin_effect (p, n);
parameter integer lumps = 10 from (1:30];
parameter real f0=1 from (0:inf);
parameter real f 1=10 from (f0:inf);
parameter real r0=1 from (0:inf);

// number of lumps in approximation
// lower frequency bound (Hz)
// upper frequency bound (Hz)
// DC series resistance (Ohms)

electrical p, n;
inout t1, t2;
real mult, mult2, wp, wz;
real zeros[0:2*lumps–1], poles[0:2*lumps–1);
integer i;

analog begin
@(initial_step) begin

mult = pow(f1/f0, 1.0/(4* lumps));
mult2 = mult*mult;
wz = 2*`M_PI*mult*f0;
wp = mult2*wz;
for (i=0; i < lumps; i=i+1) begin

zeros[2*i] = –wz;
zeros[2*i+1] = 0;
poles[2*i] = –wp;
poles[2*i+1] = 0;
wz = mult2 * wp;
wp = mult2 * wz;

end
end
V(p,n) <+ r0*laplace_zp( l(p,n), zeros, poles );

end
endmodule

The event clause contains a for loop, an iterative statement (5§6.6.2p202). The state-
ment

for (i=0; i < lumps; i=i+1) begin

end

is conceptually equivalent to
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i = 0;
while (i < lumps) begin

i = i + 1;
end

meaning that when executing the for loop, the first expression is evaluated as an ini-
tializer, the second is used as a condition that causes the loop to continue as long as it
remains true, and the advancement expression, which specifies how the successive
iteration will differ from the current one. In this case, the variable i is acting as an iter-
ator that progresses from 0 to lumps–1. Once i reaches a value that equals lumps, the
condition is no longer satisfied and the loop terminates.

Upon termination of the event statement the poles and zeros arrays are initialized.
They are passed to the laplace_zp operator that actually implements the behavior of
the module (5§4.6.7p182). This operator takes a signal, in this case l(p,n), and filters
that signal with a transfer function with the given poles and zeros to produce the out-
put. The poles and zeros are given in arrays of pairs of real numbers. The first number
in each pair is the real part of the critical frequency and the second is the imaginary
part. For this model, the poles and zeros are all real, and so the second number is
always zero. If any of the critical frequencies were complex, then they would have to
be given as conjugate pairs. In other words, if there is a pole (or zero) at
with then there must also be another pole (or zero) specified at

13  Tolerances
The behaviors included in the analog processes in a Verilog-A/MS description are
combined into a nonlinear system of differential and algebraic equations (DAEs),
which are passed to a simulator to be solved. These equations are solved numerically
in a two step process. Generally, the first step is to discretize them in time. In other
words, the differential operators are replaced by finite-difference approximations.
This allows the continuous waveforms to be discretized in time with waveforms that
have a finite number of time points. In doing so, the single system of nonlinear DAEs
has been replaced by a sequence of nonlinear algebraic equations. These sets of non-
linear equations are then solved using an iterative approach, such as Newton’s
method. In these approaches, a guess at the solution is iteratively refined until it is suf-
ficiently accurate. In both steps, tolerances are used to guide the process. When dis-
cretizing time the error increases with the size of the time step, as does the simulation
speed. Tolerances are used to determine how small the steps must be made to achieve
a certain level of accuracy. Similarly, when applying an iterative solver to the nonlin-
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13 Tolerances

ear equations, a criterion is needed for stopping the iteration once the desired level of
accuracy is achieved.

Generally there are two tolerances that are needed, a relative tolerance and an abso-
lute tolerance. Most people are familiar with the relative tolerance, reltol in SPICE.
When one says they are expecting less than 1% error, they are using a relative toler-
ance, because the error in the desired quantity is specified relative to the value of the
quantity itself. Generally, there is only one relative tolerance and it is used globally by
the simulator. Verilog-A/MS provides no way to specify the relative tolerance.
Instead, the simulator itself must provide some mechanism for allowing the user to
specify the relative tolerance.

Relative tolerances work well as long as there is some representative value with which
to compare the error. Sometimes that is not possible. For example, consider the case
of applying a relative tolerance to a signal whose error-free value is zero. In this case,
a relative tolerance will insist that the error also be zero, which is generally not possi-
ble to achieve. For this reason, simulators also use an absolute tolerance. The absolute
tolerance gives the minimum interesting size of a quantity. By definition, anything
smaller than the absolute tolerance is uninteresting and so can be ignored. The mini-
mum interesting size of a quantity varies with the type of quantity. Typically in SPICE,
any voltage smaller than is considered negligible and so is ignored, whereas
with current it is anything smaller than 1 pA that is negligible. It is for this reason that
Verilog-AMS allows absolute tolerances to be specified as part of a nature where it is
given in the abstol field.

In Verilog-AMS the issue of tolerances is mainly a matter of getting them from where
they are known to where they are needed. The relative tolerance is known globally, so
it is not an issue. The absolute tolerances are specified in the natures. The tolerances
are needed in several places. They must be accessible to the nodes and branches so
that the simulator can confirm convergence by assuring that Kirchhoff ’s laws are sat-
isfied. They also needed by the differential operators (ddt, idt, laplace, etc.) where
they control the discretization of time. All nodes and branches have disciplines that
provide direct access to the absolute tolerance through their natures. For the differen-
tial operators, things are not so easy.

During the development of the language the idea of restricting the differential opera-
tors in such a way that they had direct access to the nodes and branches was consid-
ered, but it was felt that doing so would place too much burden on the model
developers. And so, the burden now falls on the implementation of Verilog-AMS to
try to propagate the tolerances to the differential operators. How this occurs is left
unsaid. In some cases it might be possible for the operator to pick up the tolerances
from its argument. In other, it might be able to access the tolerances at its output. It is
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to support these cases that natures have the ability to refer to other natures. The oper-
ators can use the ddt_nature and idt_nature fields to access tolerances that they might
need. However, there are no guarantees that the operators will be able to gain access
to the tolerances. In these cases, you have the option of specifying the tolerances
explicitly on the operator. Each of the operators allows the tolerance to be specified as
a number or as the name of a nature from which the tolerance is extracted.

As an alternative to specifying tolerances, one can determine what tolerances the sim-
ulator is using and simply scale signals to be compatible. This is generally not pre-
ferred because it makes the models harder to write and the results harder to interpret.

14 Elements of Style
Within the syntactic constraints of the language and the requirements of the model,
Verilog-AMS, like all languages, gives you a great deal of freedom in determining the
overall look and readability of your model. You are free to provide comments, arrange
the white space, choose the identifier names and the order in which they are declared,
and so forth. The way you make these choices constitutes your style. To some degree,
style is a personal choice based on aesthetics. However, a style should also be con-
sciously designed to make your models easily understandable; both to yourself and to
others. The style used in this book makes a good starting point. It is designed to be
both informative and to allow one to quickly see the structure of the model; and it is
comprehensive enough to provide consistency to your models but not so verbose as to
be burdensome.

Our style is illustrated in Listing 30. It starts with a comment header that describes the
model. This header is missing from most of the models given in the book to save
space, but it is an important part of any shared model. It should include comments
about the model itself, plus information about the author, the version, and perhaps
where to get more information (references to papers or web sites, etc.). Consistent
placement and formatting of the sections of this header allows readers to quickly skip
over sections that are not of interest.

The module itself necessarily begins with declarations. Often your are free to choose
any order you like when declaring parameters, ports, and variables except when the
declaration of an object depends on the value of a parameter. This could happen if the
value of the parameter is used when specifying the size, default value, or bound for
the object. In this case the parameter must be declared first. It is for this reason, and
because parameters are of high interest to users of your model, that the parameters are
declared first. When declaring parameters, you should include range limits unless the
valid range is unbounded. Doing so makes your models more robust and aids in the
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LISTING 30 A varactor model that illustrates the modeling style used in this book.

II Varactor Model
II

Implements: c = c0 + c1* tanh((v – v0)/v1)
II
// Version 1a, 19 June 02
// Ken Kundert
II
// Downloaded from The Designer’s Guide (www.designers-guide.com).
// Post any questions on www.designers-guide.com/Forum.
// Documentation on the model can be found at www.designers-guide.com/Modeling

`include "discipline.vams"

module varactor(p, n);
parameter real c0 = 1 p from (0:inf); // nominal capacitance (F)
parameter real c1 = 0.5p from [0:c0); // maximum capacitance change from nominal (F)
parameter real v0 = 0; // voltage for nominal capacitance (V)
parameter real v1 = 1 from (0:inf); // voltage change for maximum capacitance (V)
inout p, n;
electrical p, n;
real q, v;

analog begin
v = V(p,n);
q = c0*v + c1*v1*ln(cosh((v – v0)/v1));
l(p, n) <+ ddt(q);

end
endmodule

documentation of your model. You should also add a brief description to each param-
eter, and that description should include the units of the parameter if appropriate. The
descriptions make it dramatically easier for someone to pick up and use your model,
and for you to remember how to use the model when coming back to it after a period
when you were not actively using it. The units serve to clarify the description.

After declaring the parameters you should declare the ports. Providing a description
of each port as shown in Listing 17 on page 67 is generally a good idea, but not
always necessary. In the model shown in Listing 30 the ports are undifferentiated and
so do not merit a description. With the gate models, Verilog established a convention
of placing the outputs first on the port list, with the primary inputs following the out-
puts, and the control inputs coming last. That convention is honored in this book. This
is demonstrated in Listing 26 on page 85. In addition, when ports come in positive
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and negative pairs, they are given together with the positive port placed first, as shown
in Listing 13 on page 61.

Finally, it is strongly recommended that you indent your code so that the extent of
compound statements and scope are easily identified. Using 2-5 spaces for an indent
level makes the indentation reasonably obvious without too much of a tendency to
squeeze your code against the right margin. It is also helpful to add an extra blank line
between logically separate blocks of code. In addition to the blank line, you should
add a comment at the top of each block. and you should add comments to describe
anything obscure in your model.

What’s Next

This chapter introduced the Verilog-A language. The mixed-signal extensions for Ver-
ilog-AMS are discussed in the next. Neither is complete in its coverage. The intent is
to introduce the language and present the concepts that it was built on rather than be a
comprehensive user’s guide for the language. More of the details of the language can
be found in Chapter 5. Beyond that, the user’s guide to your simulator or the language
reference manual can serve as a comprehensive source of information about the lan-
guage [28]. In addition, there are several books available that describe the digital part
of the language in fuller detail [1,5,23,27].

As mentioned before, Verilog-A is the analog subset of Verilog-AMS. It is the part of
the language that is suitable for implementation in a SPICE-class simulator. It is
important to recognize that even those systems that can be adequately described using
Verilog-A might benefit from Verilog-AMS. Verilog-AMS provides substantially
more powerful and more efficient event driven modeling capabilities, and many
purely analog systems are well modeled using an event-driven paradigm. So keep
reading …
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Mixed-Signal
Modeling4

1 Mixed Signal Models
Both analog and digital functionality as well as the interaction between the two
domains are described in mixed signal models. The Verilog-AMS language allows
combining analog and digital behavior into a single model. That means that such a
model can contain both mixed signal behavioral descriptions or it could instantiate a
collection of analog, digital and mixed signal modules. In most cases these models
have both analog and digital pins. But this is not always the case; occasionally a
model looks digital in terms of its pin types, but analog behavioral descriptions are
used inside. Or it may happen that a model looks purely analog when considering the
type of its pins, but inside digital constructs are used, perhaps to speed up the model.

When using a top-down design methodology for developing a mixed-signal IC there
are various needs for mixed-signal models. During the architectural phase, when
blocks are represented abstractly, a single block often includes both complex analog
and digital functionality. It is too early to divide this block into purely analog or digi-
tal sub-blocks in this phase. Verilog-AMS is used to describe this mixed-signal func-
tionality. At this high level of abstraction the modeling is mostly done in such a way
that the disciplines of the pins match. However, as the implementation process pro-
ceeds, the blocks are refined to the point where there may be multiple versions of the
same block, and those different versions may have different disciplines for the same
pin. This implies that as the different versions are used, conflicts may arise between
the discipline of a net, and the pins connected to that net. In these cases, interface
components (or connect modules as per the Verilog-AMS language definition) would
be needed to resolve the conflict. As the design proceeds to lower levels of detail,
these interface components are needed more often. Verilog-AMS provides mecha-
nisms to allow these interface components to be inserted automatically based on the
disciplines of the pins and the nets. In doing so, Verilog-AMS not only provides the
ability to naturally describe mixed-signal behavioral models, but it also allows mixed-
signal models to be built-up from purely analog and digital blocks, and those models
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conversion.

The goal of this chapter is to introduce basic mixed signal behavioral and structural
modeling techniques, and to help the user to understand the concepts of interface
components and their automatic insertion. The following section gives an overview of
modeling in the digital domain for the reader not familiar with Verilog-HDL. The
understanding of basic digital constructs is a pre-requisite for the mixed signal model-
ing concepts presented in Section 3 and Section 4.

2 Modeling Discrete Behavior

2.1 Language Basics
The ability provided by Verilog-HDL for describing discrete behavior is fully con-
tained as a subset of Verilog-AMS. That means that every Verilog-HDL model can be
legally used in a Verilog-AMS context.

2.1.1 Disciplines

Consider the simple inverter of Listing 1.

LISTING 1 Verilog-HDL description of an inverter.

module inverter (q, a);
output q;
input a;
wire a, q; // digital net type (declaration optional)

assign q=~a;
endmodule

The module header in Listing 1 looks similar to the examples provided for Verilog-A.
In comparison to these Verilog-A module examples we notice that there is no disci-
pline declaration provided for a and q (wire is not a discipline). Disciplines are a con-
cept that is not part of Verilog-HDL. Disciplines first appeared as part of Verilog-A
for continuous-time signals and Verilog-AMS extended the concept to also cover dis-
crete-time signals, however it was made optional for these signals so that Verilog-
HDL models can be used by a Verilog-AMS simulator without modification. The
default discrete-time discipline is logic, which is defined in the disciplines.vams file
and is shown in Listing 2.
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LISTING 2 The declaration of the discrete discipline ‘logic’.

discipline logic
domain discrete;

enddiscipline

The user may define several discrete disciplines to distinguish between different logic
families, different semiconductor processes, different supply voltages, etc. Neverthe-
less the inverter example shown in Listing 1 could be used directly without discipline
definition and the discipline for a and q would default to logic. Listing 3 adds the
explicit discipline declaration to Listing 1, which will later allow more control over
the interface component insertion process.

LISTING 3 The inverter of Listing 1 enhanced with a declaration of wire discipline.

`include “disciplines.vams”

module inverter (q, a);
output q;
input a;
wire a, q; // digital net type (declaration optional)
logic a, q;

assign q = ~a;
endmodule

2.1.2 Wires
Now consider the details of the inverter module. The input and output statements are
already known from Verilog-A.

wire a, q;

defines that a and q are scalar wires. A wire is one type of a digital net. A scalar wire
can carry one bit of information, and that bit can take one of the four values shown in
Table 1 (5§2.5p164).

A wire is the logical representation within Verilog of a physical wire. As such, it can
be connected to many things. In particular, there may be more than one thing driving
it. An important aspect of the semantics of a wire is how it responds when driven by
multiple outputs (drivers). If all of the drivers connected to a wire output a 0, the value
of the wire is 0; if they all output a 1, then the value of the wire is 1. However, if the
outputs produced by the drivers conflict, the wire resolves to x or unknown. The value
x is interpreted as “either 0 or 1 or in a state of change”. Any drivers that output a z
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(high impedance or disconnected) are ignored, unless all drivers output a z, in which
case the wire resolves to a z.†

A wire is not the only type of net available in Verilog (5§2.5p164). There are also
those that perform the equivalent of a wired-or or wired-and operation, those that are
equivalent to connecting to the supply or to ground, and one, trireg, that mimics a net
that holds its value due to charge storage.

It is also possible to declare a bus (a vector wire) by adding a range specification to a
wire declaration (5§2.5p164). The range consists of the integer indices for the first
and last members of the bus. For example,

wire [7:0] data;

declares an 8-bit bus, where the members can be accessed with data[i]; and i can
range from 7 to 0.

† In certain cases, resolution rules beyond the scope of this book are triggered that cause the
result to be somewhat different. For details, see the Verilog and Verilog-AMS LRMs
[16,28].
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2.1.3 Continuous Assignment

With the exception of the trireg, wires do not store values. Rather, they only transmit
values that are driven on to them. To continuously transmit a value, it must be contin-
uously driven. One way to do this is with a continuous assignment statement
(5§7.4.2p213), which is the last new statement given in Listing 1.

assign q = ~a;

indicates that q is driven at all times to the value that is the inverse of a: the state of q
changes directly with any change of a. The operator ‘~’ is the bitwise invert operator,
see (5§4.1p172) for a list of all operators available in Verilog-A/MS.
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2.1.4 Processes and Registers

Continuous assignments by themselves only consist of a single statement, and so can
only represent relatively simple behavior. For example, it is easy to implement a logi-
cal combination of values, but more difficult to describe operations that depend in
complicated ways on the past value of signals. For these, Verilog adds the concept of
processes and registers.

Processes are independently operating threads of control, and so, in a sense, a contin-
uous assignment statement represents a process. However, it is the initial and always
processes that are of primary interest at the moment. A module may have any number
of initial or always processes; all of which start up as the simulation begins. Each con-
sists of a single statement. The initial processes will execute their statements once and
then terminate. The always processes execute their statements repeatedly; they never
terminate (5§7.1p209). Both are used to implement the clock generator of Listing 4.

LISTING 4 Simple clock generator.

`timescale 1 ns / 1 ps

module clock_gen (clk);
parameter cycle = 20; // clock period (ns)
output clk;
reg clk;

initial clk = 0;

always #(cycle/2) clk = ~clk;
endmodule

This module has a single initial process that initializes the value of clk. clk is a new
type of variable called a reg, which is short for register. A register is nothing more
than a variable that can hold a logic value (0, 1, x, or z). Like all variables in Verilog,
it retains its value until explicitly changed, but since registers hold bit values, they act
like a hardware register (and hence the name).

The always process repeatedly executes the statement

#(cycle/2) clk = ~clk;

This statement has two parts to it. The first is a delay specification. The construct #x
tells Verilog to delay for x units of time before proceeding (5§7.6.1p216). A unit of
time is defined by the first statement in Listing 4,

`timescale 1ns / 1ps
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This statement gives two values, the first is the duration of a unit of time and the sec-
ond represents the resolution of time. This statement indicates that one unit of time is
1 ns, and fractional units of time are rounded to multiples of 1 ps (5§1.4p151).

The second part of the statement is a simple assignment that sets the new value of clk
to the inverse of its current value. Thus, in one pass through the always process in this
example, execution pauses for cycle/2 ns and then inverts the value of clk, and this
action is repeated forever with the result being that the value of clk alternates between
0 and 1 with a period of cycle nanoseconds. If the default value of 20 is used for cycle,
the resulting period is 20 ns and the frequency is 50 MHz.

A continuous assignment could now be used to take the value of clk and use it to drive
the output, but this is not necessary. A register can act as an output. And so, in this
example the output of the clock generator is declared to be the value of the clk regis-
ter. Of the variables, only registers have the ability to act as outputs; integers and reals
do not.

2.7.5 Timing Control

The delay construct used in Listing 4 is one of three types of timing control constructs
provided by Verilog (5§7.6p216), which are listed in Table 2. Listing 5 demonstrates
another type: edge triggering.

LISTING 5 Edge triggered d-flip-flop.

module dff (q, d, clk);
output q;
input d, clk;
reg q;

always @(clk)
if (clk)

q = d;
endmodule
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The construct @(clk) tells Verilog to wait for an event to occur on clk before proceed-
ing (5§7.6.2p216). An event is defined as a change in value. Once an event occurs, the
if statement is executed. In this model it determines if a rising edge has occurred, and
if so the output q is set to the current value of the input d. Triggering on only the rising
or falling edge is common, in which case the posedge or the negedge keywords are
used to specify which type of events are of interest. Thus, the always block could be
simplified to

always @(posedge clk)
q = d;

The third type of timing control is the wait statement, illustrated in the example of
Listing 6.

LISTING 6 A two input latch.

module Iatch2 (out, d1, d2, en);
output [1:0] out;
input d1, d2, en;
reg [1:0] out;

always @(d1 or d2)
wait (!en) begin

out[0] = d1;
out[1] = d2;

end
endmodule

The wait is level triggered; it pauses execution of the process until its argument is true
(5§7.6.3p218). In this case it waits for !en to go to 1. The ‘!’ operator returns the logi-
cal negation of its argument en, and so in this case the process waits for en to become
0 (5§4.1p172). Level triggering differs from event triggering if the desired condition
is present when the delay construct is executed. In that case, level triggering provides
no delay, whereas event triggering will wait for the next time that the condition
becomes true.

2.1.6 Vectors

Listing 6 also demonstrates the use of busses or bit vectors. With

reg [1:0] out;

register out is declared as a vector with two members, the first having an index of 1
and the second having an index of 0 (5§2.2p155). This declaration is largely dupli-
cated in the output specifier,
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output [1:0] out;

but it need not be, it is sufficient to simply declare out as being an output with

output out;

The members of the bit vector are assigned values with the statements

out[0] = d1;
out[1] = d2;

The individual members were accessed by placing the index of the member in brack-
ets, a process called bit selection. They could also have been assigned in mass using

out = {d1, d2};

Here the braces create a vector by concatenating the list of arguments within the
braces, and then that vector is assigned to out (5§2.1.4p154).

2.1.7 Procedural Blocks

The latch model of Listing 6 introduces one more very important concept: procedural
blocks. A procedural block is a compound statement that starts with the begin key-
word and finishes with the end key word (5§7.2p209). From the outside it appears as a
single statement, but once executed each of the statements it contains is executed in
order, with a statement executing after the statement that precedes it completes. When
the last of its statements completes, the procedural block itself completes. In this
example, the procedural block consists of

begin
out[0] = d1;
out[1] = d2;

end

In this block, out[0] is assigned first, and out[1] is assigned after out[0]. While out[1]
is assigned after out[0], it is important to recognize that from the perspective of the
system being simulated, no time passes between when the two statements execute.
System time advances only when evaluating the various timing control constructs (#,
@, wait).

2.1.8 Concurrent Blocks

Procedural blocks represent a compound statement where the component statements
execute sequentially, or in series. Verilog also provides a compound statement where
the component statements execute concurrently, or in parallel: a fork-join block
(5§7.3p211).
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Example:
fork

#5            a = 1;
#10         a = 0;
#15         b = 1;

join

In this example, all three statements are launched at the time the block is executed,
and the block completes after all of its component statements have completed. The
value of a is set to 1 after 5 time units and then returned to 0 after another 5, and the
value of b is set to 1 and the compound statement completes after another 5 time units,
or 15 units after the block started executing as shown in the time line below.

Contrast this with the same set of statements contained in a procedural block.

begin
#5
#10
#15

end

a = 1;
a = 0;
b = 1;

In this case, the delays accumulate as shown in the time line below.

The fork-join structure is especially useful for producing test bench stimuli.

2.1.9 Delayed Assignment

In the two forms of assignment presented so far the assignment occurs at the same
time as the evaluation of the expression on the right side of the assignment. In hard-
ware, there is typically a delay between these two. Adding delay before the assign-
ment can be done, but it delays both the evaluation and the assignment. Verilog allows
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delay to be inserted directly into the assignment statement itself. This is referred to as
inter-assignment delay (5§7.6.4p218). There are two ways in which this can occur.
The first inserts a simple delay,

Example:
a = #5 b;

In this example, the right-hand side is evaluated, the delay occurs, and then a is
updated and the statement completes. The same can be done with event delays.

Examples:
q = @(posedge clk) d;

Swapping of two values can be preformed without a temporary variable using a con-
current block and delayed assignment.

fork
a = #1 b;
b = #1 a;

join

Without the delay, a race condition would occur, making the final outcome indetermi-
nate.

2.1.10 Non-Blocking Assignment

The assignment found in initial and always processes so far have been blocking
assignments. They are called that because adding the delay acts to pause or ‘block’
the execution of the process. An alternative type of assignment is the non-blocking
assignment (5§7.4.1p212), demonstrated below.

Example:
always @(negedge clk) begin

a <= ~b;
b <= ~a;

end

If this code employed blocking assignments, once a falling edge occurred on clk the
first assignment statement would update a before the second assignment evaluated its
right side, with the end result that b returns to its original value. However, when more
than one non-blocking assignment is executed at the same time, the right sides of all
of them are evaluated before any left side is updated. As a result, they all appear to
occur concurrently. Thus, if the non-blocking assignments occur at time t, then the
value of the arguments at time is used to produce the updates, which occur at time

For the example above, a falling edge on clk triggers the execution of the proce-
dural block causing the right side of each non-blocking statement to be evaluated to
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form and then the assignment targets are updated to and
and finally the process blocks and waits for the next falling edge on clk. The end
result is that a and b are both swapped and inverted on every falling edge of clk.

Delay can be added to non-blocking assignments in the same way it was with block-
ing assignments. However, the delay does not act to block the execution of the process
in which the assignment resides. Instead, the right side expression is evaluated, the
result is set aside temporarily, and the update of the target is scheduled into the future
and the statement completes. Later, once the specified delay passes, the target is
updated to the saved result.

2.1.11 Delayed Continuous Assignment

Delay can also be added to continuous assignments, but in this case the delay is spec-
ified before the assignment target.

Example:
assign #5 a = b;

2.2 Integers and Reals

Integer and real values provide the user with the ability to write models at a higher
level of abstraction than if only simple wire and register types were used, which are
more closely tied to the actual hardware implementation. Verilog-HDL provides inte-
gers and reals as “abstract data types”, as does Verilog-AMS. In addition to support-
ing integers and reals as constants and variables, Verilog-AMS also allows integer and
real valued discrete-event signals to be transported across the module boundaries with
the wreal wire type. It is important to stress here that the wreals, as well as the integer-
and real-valued variables described here, are all associated with the discrete-event
kernel. Comparing the value of a wreal wire with the voltage potential of an electrical
node reveals that the numerical value of both is real, meaning that the signals can take
on any real value, but the wreal wire can only change its value at discrete points in
time and is otherwise constant while the potential of an electrical node can change
continuously with time. Thus, the wreal wire is discrete in time whereas the potential
of an electrical node is continuous in time.

As an example of the use of integers in a module, consider the counter shown in
Listing 7. At every rising edge of clk the integer variable count is incremented by one
until it equals the value of maxcount, which has the default value of 9. At this point
the output register out becomes high for the length of the period of a clock cycle. In
this way a transition on the output occurs for every maxcount transitions on the input.
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LISTING 7 Behavioral model of a counter.

module counter (out, clk);
parameter maxcount = 9; // the number of input pulses per output pulse
input clk;
output out;
reg out;
integer count;

initial begin
out = 0;
count = 0;

end

always @(posedge clk) begin
count = count + 1;
if (count == maxcount) begin

out = 1;
count = 0;

end else if (count == 1)
out = 0;

end

endmodule

Listing 8 contains a frequency measurement module. It calculates the frequency of a
digital input clock based on the time difference between two rising edges. The vari-
ables last_time, current_time and freq are declared as reals. The frequency value is
retained within the module, but it can still act as a useful output to the user as it can be
read directly by the debug or waveform tools. The $realtime† system function returns
the current digital simulation time. It provides the real representation of the simula-
tion time in the time units defined by the `timescale directive. This time is converted
to seconds by multiplying the return value of $realtime with the time unit setting for
this module.

† In early versions of Verilog-A, $realtime was used to return the current simulation time as a
real value in seconds. When Verilog-HDL and Verilog-A were combined into the Verilog-
AMS standard, the Verilog-HDL behavior of this system function was kept and the Verilog-
A version of this functionality was renamed to $abstime.
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LISTING 8 Digital frequency measurement.

`timescale 1ns / 1ps

module freq_meas (clk);
input clk;
real last_time, current_time, freq;

initial begin
last_time = 0.0;
freq = 0.0;

end

always @ (posedge clk) begin
current_time = $realtime;
if (last_time > 0.0)

freq = 1.0e9 / (current_time – last_time);
last_time = current_time;

end

endmodule

2.2.1 Real Wires
The real values used in Listing 8 are variables. The usage of variables is limited to
within the module context only; and unlike registers, real and integer variables cannot
be used as ports. The transfer of real values between modules is cumbersome in Ver-
ilog-HDL. The real wire type wreal was added to Verilog-AMS to make it easy to
pass both integer and real values between modules. The example in Listing 9 shows
how a wreal can be used to describe the behavior of a DAC. This module is very sim-
ilar to the Verilog-A DAC found in Section 11 of Chapter 3 except for the wreal out-
put. Since a real variable cannot act as a port, it is necessary to use a continuous
assignment to drive the wreal port.

3 Modeling Mixed-Signal Behavior
Verilog-AMS not only combines the syntax elements of Verilog-A and Verilog-HDL,
but it allows both within a single module. For the analog modeler it adds powerful ele-
ments for efficiently describing event-driven behavior. It can both shorten the model
development time and reduce the simulation time if used in the right way. A good
example of the simulation speed-up that can be achieved by leveraging mixed-signal
techniques is a phase-locked loop (PLL) based frequency synthesizer like the one
shown in Figure 1.
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LISTING 9 Verilog-AMS model for a digital-to-analog converter with wreal output.

`timescale 1ns / 1ps
`include “disciplines.vams”

module dac (out, in, clk);
parameter integer bits = 8 from [1:24]; // resolution (bits)
parameter real fullscale = 1.0;  // output range is from 0 to fullscale (V)
parameter real td = 0.0; // delay from clock edge to output (s)
parameter integer dir = 1 from [–1:1] exclude 0;

// +1 triggers on rising clock edge, –1 on falling
output out;
wreal out;
input [0:bits–1] in;
input clk;
logic in, clk;

real result, aout;
integer weight;
integer i;
parameter integer idir = (dir == 1 ? 1 : 0);

always @(clk) begin
if (clk == idir) begin

aout=0.0;
weight = 2;
for (i=bits–1; i>=0; i=i–1) begin

if (in[i]) aout = aout + fullscale / weight;
weight = weight * 2;

end
result = #(td / 1.0E–9) aout;

end
end

assign out = result;
endmodule

A PLL-based frequency synthesizer generates a high frequency signal that is an exact
multiple of a lower frequency reference signal. The voltage controlled oscillator
(VCO) produces the high frequency output signal (out). Its output frequency is made
an exact multiple of the reference frequency (ref) by using feedback. The reference
frequency is compared to a divided down version of the VCO output frequency (fb)
produced by the frequency divider (FD). Any difference in the phase or frequency
between the two is sensed by the phase-frequency detector (PFD) and converted to an
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error signal (err) by the charge pump (CP) and loop filter (LF) that is used to adjust
the VCO control signal so as to eliminate the frequency error.

The VCO, charge pump and loop filter are all circuits that exhibit analog behavior
whereas the frequency divider and phase-frequency detector are purely digital. If we
were not allowed to construct mixed-signal models, the first three blocks would be
represented with Verilog-A and the latter two with Verilog-HDL. In order to connect
the two types of models, some sort of interface components that converts signals
between the continuous and discrete time domains would be needed at nodes up, dwn,
and out. Such an approach would be relatively inefficient, as both the charge pump
and the VCO, while analog in nature, can be more efficiently modeled using the ana-
log event-driven capabilities of Verilog-AMS. Consider the VCO. It produces the
highest frequency signal in the design and therefore, of all the components, most
strongly affects the simulation time. Assume the Verilog-A model given in Listing 22
on page 74 is used for the VCO. It produces a sinusoidal output signal and the model
forces the simulator to take at least 10 time steps per period to achieve sufficient accu-
racy, which will cause the simulation of the VCO to be expensive. However, even if
the output were converted to a square wave, at least 4 time points would be needed per
output period, with a more likely number being 10-20. Either way, the VCO is expen-
sive to simulate in the continuous-time domain. This is where Verilog-AMS can make
a big difference. Modeling the output of the VCO in the discrete-event domain and the
input circuitry of the VCO in the analog domain would result in many fewer continu-
ous-time points being needed. Just such a model for the VCO is shown later in
Listing 13 on page 120. Until then, the mechanics of constructing mixed-signal mod-
els are presented. This will allow us to both eliminate the need for external interface
components and allow us to build models such as the VCO that naturally span the two
domains.

3.1 Analog and Digital Contexts

The module header and declaration portions of the module are used for both analog
and digital elements. The behavioral description portions are separate. The analog
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behavior is described in the analog process recognizable by the analog keyword that
is known from Verilog-A. Digital behavior is described outside of this process.

It should be understood that by analog we mean ‘continuous time’ and by digital we
mean ‘discrete event’. In reality, analog is not synonymous with continuous time.
Analog really means continuously valued, and it is possible to have continuous-value
discrete-event models. However, with regards to mixed-signal simulation, common
usage associates the term ‘analog’ with the continuous-time kernel and semantics.
Similarly, digital is used to refer to the discrete-event kernel and semantics even
though it is possible to use them to represent continuous-value, and hence analog, dis-
crete-event models.

From within an analog process it is permissible to read but not modify the data associ-
ated with discrete processes. In particular, from an analog process one can access the
values of discrete-event wires, events, and registers and other variables. This means,
analog behavior can be modeled that is dependent on the status and events of the dis-
crete domain portion of the module. Similarly, the digital behavior described outside
of the analog process can be dependent on signals, values, and events associated with
analog processes.

Although analog and digital variables are declared identically, they are owned by
either the analog or the digital context. One cannot distinguish from the declaration

real x;

whether it is owned by the analog or by the digital context. However, Verilog-AMS
only allows write access to one domain. If it is the target of an assignment in an ana-
log process, it is said to be owned by the continuous kernel. Conversely, if it is
assigned a value in a discrete process (initial or always) it is owned by the discrete
kernel. In other words, the context in which the assignment to a variable takes place
owns the variable. Thus an assignment in an always block

always @(posedge clk)
begin

a = 1;
end

would mean that the real variable a is owned by the digital kernel. Other assignments
to a would be allowed in the digital context like in other always or in initial blocks,
but assignments to a in the analog process would be illegal. However read-access to a
would be allowed in both contexts. On the other hand if the assignment or write-
access to the variable is made in the analog context like the real variable reff in
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Listing 11 shown later, the variable is owned by the analog kernel. Even though it is
possible to read it in the digital context it could not be changed from there.

3.2 From Digital to Analog
If the analog behavior is dependent on digital conditions, the analog process must
explicitly access information from the digital context. This information can be
accessed in two different ways: the state of wires and variables from the digital con-
text can be read when their value is needed, or a certain change of the digital state can
be used to trigger changes in the analog behavior.

3.2.1 Digital Access on Demand

The model for a digitally controlled ideal switch is given in Listing 10.

LISTING 10 Digitally controlled switch.

`include “disciplines.vams”

module switch (p, n, s);
input s;
output p, n;
logic s;
electrical p, n;

analog begin
if (s)

V(p, n) <+ 0.0;
else

l(p, n) <+ 0.0;
end

endmodule

In the module header and declaration portion both analog and digital inputs and out-
puts are declared. The analog process is executed at each analog simulation time step.
The switch is on or off dependent on the status of s. If the value of s is 1 the switch is
closed, otherwise the switch is open. This mixed-signal model does not contain any
digital behavior; it just reads a digital state needed to maintain the analog behavior.
Thus there are no digital behavioral statements in the module.

3.2.2 Analog Sensitivity to Digital Events
Instead of just reading the discrete domain data it is often more efficient to make the
analog behavior sensitive to events in the discrete domain. That way the analog can
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react at the instant when a digital value changes. Listing 11 shows an example where
this modeling style is used to describe a digitally controlled non-ideal switch.

LISTING 11 Digital controlled switch with internal resistance.

`timescale 1ns / 1ps
`include “disciplines.vams”

module switch (p, n, s);
parameter real ron = 10.0 from (0:inf);         // on resistance (ohms)
parameter real roff = 100.0M from (ron:inf); //off resistance (ohms)
parameter real td = 0.0; // delay time (s)
parameter real tr = 20n; // rise time (s)
parameter real tf = 20n; // fall time (s)
input s;
logic s;
electrical p, n;

real reff;

analog begin
@ (posedge s) reff = ron;
@ (negedge s) reff = roff;
@ (initial_step) reff = (s ? ron : roff);

l(p, n) <+ V(p, n) / transition(reff, td, tr, tf);
end

endmodule

During the initial analog simulation step the target resistance value reff of the switch
is set dependent on the digital input state in. The state of in is read as in the previous
example. Afterwards, changes in the value of reff result from events on in. When dig-
ital events occur that are being monitored by the continuous-time kernel, mixed signal
synchronization results. The Verilog-AMS language reference manual [29] clearly
defines this synchronization algorithm, thereby ensuring the same behavior of the
model when used with different simulators built according to the Verilog-AMS stan-
dard. When these digital-to-analog events occur the synchronization algorithm guar-
antees that the digital change is noticed by the continuous-time kernel immediately.

Figure 2 illustrates how the synchronization algorithm works for the case of the

@ (posedge s)

statement in the analog block:

1. The continuous-time kernel has solved time point a and the discrete-event driven
kernel has processed all the digital events up to the digital time point b.
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2. The analog kernel chooses the analog time point c as its next time point to solve
according to its built-in time step mechanism and solves the analog system at this
point.

3. The digital kernel is now enabled to proceed forward to evaluate the digital events
up to a digital time point equivalent to c, but at the time d the value of s changes
state. Because there is an analog sensitivity to this event, it causes the discrete ker-
nel to stop at d and to hand over the simulation control to the continuous-time ker-
nel.

4. The already calculated analog time point c is rejected, because it did not take the
analog reaction to the digital event at d into account.

5. The continuous kernel solves the analog system at e. The time of e is chosen to
exactly equal the time of d. The analog solution at this point accounts for the
change in s. In our example this means that reff is set to ron. Thus the digital event
is recognized immediately and leads to changed analog behavior.

6. The analog kernel again takes the lead by advancing time to point f , where it
solves the analog portion of the circuit. It then passes control back to the digital
kernel in order to allow it to catch up.

The transition function is used to smooth the effect of the abrupt change in the value
of reff. This is a recommended practice as the continuous-time kernel often times does
not react well to abrupt changes. In this case, the transition function ensures that the
analog behavior changes continuously. But more than that, it reduces the variation in
the behavior of the system that would occur as a result of variations in the size of the
time step that either immediately precedes or follows the abrupt change. The transi-
tion function defines exactly the beginning, the end, and the rate of change within the
transition (5§4.6.4p180).
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3.3  From Analog to Digital
The values of the analog domain can be accessed from within the discrete context just
as in the opposite case just described. And again we differentiate between the two
major ways of accessing the data: access by demand, meaning the reading of the value
of analog signals or variables when the data is required on the digital side; and the
detection of analog events like threshold crossings and the transformation of these
events into the digital domain.

3.3.1  Analog Access on Demand

Listing 12 shows a discrete-event analog to digital converter. It is similar to the one
given in Listing 26 on page 85, but rewritten to employ the faster discrete-event ker-
nel. The conversion takes place on each rising edge of the clock. At that point the ana-
log input signal is read. Verilog-AMS does not require the analog kernel to place a
point at the instant when the analog value is sensed, and so the value is likely interpo-
lated.

This represents an important difference between digital access on demand and analog
access on demand. If an analog process is sensitive to a digital signal, then it is evalu-
ated at the point when the digital signal changes. However, the reverse cannot be true
for discrete processes when they are sensitive to continuous-time signals as these sig-
nals can change continuously. If it is desired to force the analog kernel to place a time
point at the instant when the converter samples the input signal in order to increase the
accuracy of the samples, add the following lines to the model.

analog @(posedge clk)
;

In Listing 13 is a Verilog-AMS description of a VCO in which the analog input volt-
age controls the frequency of an output clock. This mixed signal VCO can be used to
significantly improve the simulation run-time of the PLL mentioned earlier. The ana-
log input voltage is sampled at half the period of the output clock. The control voltage
for the output frequency is the voltage difference between the inputs ps and ns (short
for positive sense and negative sense). The parameter f0 is the center frequency of the
VCO output. It is the frequency measured at the output when the input differential
voltage is zero. The kvco parameter determines the voltage-to-frequency gain. The
output clock generation is a modification of the simple clock generator shown in
Listing 4. The clock frequency is not a constant anymore. Now it is dependent on the
input voltage. The clock output out starts at logic low at time zero and is inverted after
every half period of the desired output frequency. With

vin = V(ps, ns);
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LISTING 12 Verilog-AMS model for an N-bit analog-to-digital converter.

`include “disciplines.vams”
`timescale 1ns / 1ps

module adc (out, in, clk);
parameter integer bits = 8 from [1:24]; // resolution (bits)
parameter real fullscale = 1.0; // input range is from 0 to fullscale (V)
parameter real td = 0; // delay from clock to output (ns)
input in, clk;
output out;
voltage in;
reg [0:bits–1]out;
reg over;
real sample, midpoint;
integer i;

always @(posedge clk) begin
sample = V(in);
midpoint = fullscale/2.0;
for (i = bits – 1; i >= 0; i = i – 1) begin

over = (sample > midpoint);
if (over)

sample = sample – midpoint;
sample = 2.0*sample;
out[i] <= #(td) over;

end
end

endmodule

the differential input voltage is sampled every half period and the value stored in the
digital real variable vin. Afterwards vin is used to calculate the length of half the
period of the desired output frequency.

3.3.2  Digital Sensitivity to Analog Events

Whereas the analog values are simply read when a new analog value is needed in the
digital context, digital behavior can also be triggered when a certain condition occurs
on the analog side. Such analog events could be the crossing of a voltage threshold or
an analog timer event for instance. To make a digital block sensitive to an analog
event, the analog event expression is put directly into the digital block instead of a
digital event expression. The following always process uses the cross function to
detect when the voltage at node in crosses 2.5 V in the positive direction.
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LISTING 13 Mixed-signal voltage controlled oscillator.

`timescale 1ns / 1ps
`include “disciplines.vams”

module vco (out, ps, ns);
parameter real f0 = 100k from (0:inf);  // center frequency (Hz)
parameter real kvco = 10k; // gain (Hz/V)
input ps, ns;
output out;
electrical ps, ns;
reg out;
logic out;
real vin;

initial out = 0;

always begin
vin = V(ps, ns);
#(0.5e9 / (f0 + kvco * vin))
out = ~out;

end
endmodule

always @(cross(V(in) – 2.5, 1)) begin
dreg = ~dreg;

end

When this occurs, the digital register dreg is inverted. This example could also use the
above event function to detect the threshold crossing.

always @(above(V(in) – 2.5)) begin
dreg = ~dreg;

end

The behavior would be similar to the example where the cross function is used, with
the exception that the above function also produces an event if V(in) is above the
threshold during the initialization phase of the simulation (during a DC or IC analy-
sis) whereas the cross function only produces events at the actual threshold crossings.

The crossing point (a in Figure 3) is found by the analog solver. It then places an eval-
uation point, b, within the interval defined by the tolerances associated with the cross
or above function. The analog evaluation point will not coincide precisely with the
threshold crossing because the representation of time used by the analog kernel has
only finite precision. Instead, the evaluation point is placed just beyond the threshold
crossing. In this way, any conditionals within the analog behavioral description will
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detect the crossing. The discrete kernel also represents time using finite precision,
with the resolution being given in the `timescale directive. Therefore, the time of the
digital evaluation point, c, will be displaced somewhat from both the time of the
crossing, and from the time at which the analog kernel places its evaluation point. In
this case, the digital event is scheduled at the closest digital evaluation point (point c
in Figure 3) exactly at or earlier than the time point where the analog event occurred.

A typical behavioral element that uses analog-to-digital events is the comparator
module shown in Listing 14. The input of this module is an analog differential volt-
age. The output is a logic signal. The output changes when the input voltage differ-
ence crosses a certain voltage threshold. The parameter hyst provides the capability to
add a hysteresis between the lower and the upper thresholds. The example uses the
above statement to ensure a correct setting of out from the beginning of simulation.

4 Structural Verilog-AMS
Verilog-AMS is more than just a mixed-signal behavioral modeling language. In
Chapter 3, focusing on the analog subset Verilog-A, the capabilities of the language
for structural descriptions were explained (3§2p41). The assembly of Verilog-A
instances in a structural description or netlist and the mechanism for overwriting of
the instance parameters is already known. This structural use of Verilog-A and its
capability to mix these structural descriptions with behavioral descriptions within one
and the same module is fully compatible with Verilog-AMS. Verilog-AMS allows the
instantiation of analog Verilog-A, digital Verilog-HDL and mixed-signal Verilog-
AMS modules. It also allows connection of these instances with each other and the
mixture of netlist structure and mixed-signal behavior within a single module.
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LISTING 14 Comparator with logic output

`timescale 1ns / 1ps
`include “disciplines.vams”

module comparator (out, p, n);
parameter real offset = 0; // Offset voltage (V)
parameter real hyst = 0.0 from [0:inf); // Hysteresis (V)
inout p, n;
output out;
electrical p, n;
logic out;
reg out;

parameter real thrlo = offset – 0.5*hyst; // Lower threshold voltage (V)
parameter real thrhi = offset + 0.5*hyst; // Upper threshold voltage (V)

always @(above(V(p, n) – thrhi))
out = 1;

always @(above(thrlo – V(p, n)))
out = 0;

endmodule

It is important to note that both the digital Verilog-HDL as well as the analog Verilog-
A language support their own subset of the Verilog-AMS structural syntax. Especially
in the case of Verilog-HDL it could be a good idea to limit the use of Verilog-AMS to
this subset if all instances in the netlist are purely digital. This has the advantage that
if need be, the module could be read by a Verilog-HDL simulator without modifica-
tion. This is useful if a block is reused in a purely digital design, or in cases where
purely Verilog-HDL compatible descriptions of the design are needed to share with
members of the design team that are not analog savvy.

4.1  Connecting Analog and Digital
Verilog-AMS allows one to directly connect analog and digital ports of instances in a
netlist or structural description. As a simple example, Listing 15 connects the digital
clock generator introduced in Listing 4 directly to a Verilog-A resistor. Note that the
net x is not explicitly declared in the netlist. It is the task of Verilog-AMS’s discipline
resolution algorithm to determine which domains and disciplines should be used for
the undeclared nets.

Once the domains and disciplines are resolved in the design, it may happen that ports
from different domains are connected to the same node. It is at these nodes that con-
nect modules are automatically inserted in order to act as translators between the two
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LISTING 15 Netlist that connects analog and digital modules.

`include “disciplines.vams”

// the resistor
module res (p, n);

parameter real r = 100k from (0:inf); // resistance (Ohms)
inout p, n;
electrical p, n;

analog l(p, n) <+ V(p, n) / r;
endmodule

// the netlist
module top;

clock_gen #(.cycle(1)) clock_gen1 (x);
res #(.r(50k)) r1 (x, gnd);

endmodule

domains. Connect modules are also referred to as interface elements or interface
components. Users have full control over which connect modules are used and can
write their own connect modules using the full power of the Verilog-AMS language.
Connect modules even provide access to some capabilities that are not available in
normal modules. Discipline resolution, connect module insertion, and the connect
modules themselves are part of the Verilog-AMS language and will be discussed in
the remainder of this chapter.

4.2  Discipline Resolution
To understand the automatic connect module insertion mechanism we must first
understand the discipline resolution algorithm. The simulator resolves the net disci-
plines in several steps.

Initially the disciplines for the nets contained entirely within the scope of a module
are determined. If undeclared, a net will take the discipline of whatever is connected
to it. Within a module a net may be connected either to components instantiated from
within the module or to behavioral descriptions given in the module. Behavioral
access to continuous-time nets is only allowed for nets that have declared disciplines;
however it is common for discrete behavioral models to access the values of wires and
registers directly, without an implied discipline. In this case, the `default_discipline
directive is used to determine which discipline should be used for the net. The
`default_discipline directive allows pre-existing digital Verilog-HDL modules to be
used without needing to add discipline declarations for all signals. Consider the fol-
lowing example.
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`include “disciplines.vams”
`default_discipline logic

module test (out, in);
output out;
input in;
reg out;

always @(in) out = in;
endmodule

The `default_discipline directive causes both the register out and the wire in to be
implicitly declared with a discipline of logic, just as if the following line had been
found in the module.

logic in, out;

Of course, the default discipline could also be set to a user defined discipline, unlike
in this example where the pre-declared discipline logic is used as the default. Simula-
tors may also provide an option to set the default discipline for the whole design at
once at the command line or in an options file.

In the second step of the discipline resolution algorithm, the out-of-module discipline
declarations are taken into account. Such out-of-module discipline declarations are a
method for coercing the mixed-signal discipline resolution from outside a module.
For example, a user may want to force a particular net having no discipline to be
declared logic to prevent it from becoming analog during the later steps of the disci-
pline resolution algorithm. The discipline declaration statement

logic top.a73.x

in the netlist coerces the discipline of the domainless net x located within the instance
a73 that is instantiated in the top-level module top to the discipline logic.

After considering the out-of-module discipline coercions, mixed-signal discipline res-
olution resolves all nets that still do not have assigned disciplines. For this step Ver-
ilog-AMS provides two methods: the basic or default method and the detailed
resolution method. However, it does not provide a way of selecting which method is
used. This must be done using direct manipulation of the simulator options.

4.2.1  Basic Mixed Signal Discipline Resolution

Recall that a node is an electrically infinitesimal point of interconnection and a net is
the name used for a node within a particular module. Thus, a node can consist of sev-
eral nets, each existing in different modules and perhaps each with their own disci-
pline declarations. These disciplines must be resolved to a single discipline on those
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nets where connect modules (interface components) are needed in order to determine
which connect module to use.

With the default method of discipline resolution the nets of both discrete domain dis-
ciplines as well as continuous (analog) domain disciplines inherit their disciplines
upward through the design hierarchy. That means a net with no discipline declared in
an upper level of the design hierarchy (closer to the root of the hierarchy or the top-
level module) will inherit its discipline from the ports (or nets) that connect to it from
lower in the design hierarchy, and so on (5§2.4.4p162). In the case where there are
multiple ports from a lower level connected to an undisciplined net the following res-
olution rules apply:

1. The net takes the discipline of the lower level ports if all the ports connected to the
net share the same discipline.

2. The user must provide a resolution rule in the case where several compatible disci-
plines of the same domain (either discrete or continuous) meet each other. For dis-
ciplines to be compatible they must share the same domain (5§2.4.1p161). In
addition, for continuous-time disciplines the natures must derive from the same
base natures. All discrete disciplines are naturally compatible with each other.
This case is illustrated in Figure 4. Here a net x without a declared discipline con-
nects to a port with the discipline logic_a with a port having the discipline logic_b,
where logic_a and logic_b are assumed to be discrete disciplines and so are com-
patible. In this case the user must define how the discipline conflict is resolved.

One declares the desired resolution of compatible disciplines using connect /
resolveto statements:

connectrules MyRules;
connect logic_a, logic_b resolveto logic;

endconnectrules
The connect statement is used inside of a special block beginning with the key-
word connectrules. This connectrules block defines the discipline resolution and
connect module insertion rules for the design. It must be placed outside of the
scope of any module. The name of the connect rules, in our case MyRules, is
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unique in the design. Several connect rule definitions with different names can be
present in the design and the user uses the names to select which set is used for the
simulation. The above connectrules example specifies that a net without a disci-
pline declaration that connects to ports with logic_a and logic_b disciplines should
resolve to the logic discipline.

In the analog domain, a design containing interconnections between signal flow
and conservative ports is a typical situation where a resolveto declaration is
needed. Listing 12 on page 119 shows an ADC module using the signal flow disci-
pline voltage for the input port in. If this input connects on the next higher level of
the design hierarchy to an electrical port, like a resistor pin, a resolveto statement
is needed to specify the proper resolved discipline for the net. The statement

connect electrical, voltage resolveto electrical;

in the connectrules block defines that an undeclared net that connects electrical
and voltage pins should take the discipline electrical.

3. If one of the lower level nets is analog (continuous-time domain) the higher level
net becomes analog too. This means analog wins over digital. It also implies that a
connect module will be needed to resolve the incompatibility between the now
analog net and any digital (discrete time) ports that connect to it.

With this algorithm the disciplines are resolved upward through the hierarchy, as
shown in Figure 5. The structural blocks block1 and block2 as well as the behavioral
block d1 are instantiated in the top level. Looking down the hierarchy, block 11 and d2
are instantiated within block1, and block11 contains d3 and d4. The undeclared net a
connects the logic_a discipline port of d3 with the logic_b discipline port of d4. There
is no connection to a continuous discipline port at this lowest level of the design hier-
archy and so the net a will inherit a discrete discipline. By connectrules MyRules,
logic_a and logic_b resolve to the logic discipline, and so net a takes the logic disci-
pline (by rule 2). At the next level of the design hierarchy in block1 with port a
resolved to the logic discipline and with the port of d2 being logic, the undeclared net
b also inherits the discipline logic (by rule 1).

The undeclared net e in the top level connects port b of block1 with a logic port of d1
and port d of block2. The discipline of the undeclared port d is not resolved yet. The
discipline resolution algorithm must resolve this first before it can determine the dis-
cipline of e. Since disciplines resolve upward, we must again begin at the lowest level
of the design hierarchy. Within block21 the net c connects an electrical port of a1 with
a logic port of d6. The continuous discipline wins over the discrete one (by rule 3) and
so net c inherits the electrical discipline. One level above the now electrical port c of
block21 is connected to a logic port of d5. Thus net d becomes an electrical net (by
rule 3). At this point the discipline at the top level can be resolved. Because port d of
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block2 is electrical the top level net e becomes electrical too (by rule 3). All unde-
clared disciplines are resolved at this point.

Consider another example: the PLL circuit shown in Figure 1 on page 113. Assume
that all nets at the top level are undeclared and further assume that the divider (FD)
and the phase/frequency comparator (PFD) are digital models while the charge pump
(CP), the loop filter (LF) and the VCO are analog. The discipline resolution would be
simple and straight forward. The net err becomes analog because it connects only to
analog ports, and net fb would become digital because it connects digital ports only.
The nets up, dwn and out connect analog and digital ports. Because the analog disci-
pline wins over the digital, they inherit the analog discipline.

4.2.2  Detailed Mixed Signal Discipline Resolution

With the detailed method of discipline resolution every net that in any way connects
to an analog port becomes analog. Thus, the basic rule of this method is that analog
nets first pass their discipline upwards and then these disciplines propagate downward
through the hierarchy to the nets with undeclared disciplines. After this general rule is
applied the still unresolved nets inherit the digital discipline from ports that connect
from lower in the hierarchy using the basic method of discipline resolution.

Usually detailed discipline resolution results in a larger number of undeclared nets
becoming analog as compared to the basic method.

Applying the detailed discipline resolution algorithm to the design in Figure 5 results
in the resolved disciplines shown in Figure 6. All shown undeclared wires resolve to
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the discipline electrical because they all connect through the design hierarchy to the
electrical port of the block a1.

If applied to the PLL example of Figure 1 the detailed discipline resolution result
would be identical to the default discipline resolution mechanism because undeclared
nets are not connected to ports of undeclared discipline nets from the lower levels of
the hierarchy.

After the mixed signal discipline resolution has finished, every net in the design has
an assigned discipline, and so each net is associated with a domain.

4.3  Automatic Connect Module Insertion
Connect modules are needed in all cases where a continuous analog discipline net
connects to a discrete digital discipline port or where a discrete digital discipline net
connects to a continuous discipline port. They are automatically inserted if the proper
connect rules are specified. In the example described earlier using the basic discipline
resolution algorithm, the insertion points for connect modules are A, B, C and D as
shown in Figure 7.

The insertion of the connect modules is handled after the discipline resolution is fin-
ished and before the simulation starts, typically during the design linking or elabora-
tion phase. At this time Verilog-AMS connect modules have to exist in the simulation
library and have to be accessible. They are inserted by name. The automatic insertion
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is controlled by the Verilog-AMS connectrules block, already introduced in conjunc-
tion with the resolveto statement. The connectrules specification

connectrules MyRules;
connect a2d input electrical, output logic;
connect d2a input logic, output electrical;

endconnectrules

specifies that the connect module with the name a2d is used at insertion points that
are in need of an electrical-to-logic discipline transformation. This is the case at input
ports of logic discipline that are driven by an electrical net. In the example, a2d con-
nect modules will be inserted at A and C. The electrical input of the a2d module is
connected to the electrical net, and the logic output of the a2d module to the logic
input port pin as shown in Figure 8. In the other direction the module with the name
d2a is inserted where logic-to-electrical discipline transformation is necessary. In
Figure 7 this is required at the points B and D.

For the PLL example of Figure 1 an a2d element is inserted between the electrical net
out and the divider input port with d2a modules being inserted between both logic
outputs of the phase comparator and the electrical nets up and dwn.

Verilog-AMS provides two different modes of connect module insertion: merged and
split. Merged insertion is the default. In this mode all of the connect modules of the
same kind at the same net and at the same level of the design hierarchy are merged
into one. In the split mode separate connect modules are inserted; one for each of the
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port pins that connects to the net. The split and merged keywords in the connect state-
ment specify which insertion mode is used. The definition

connectrules MyRules;
connect a2d split input electrical, output logic;
connect d2a merged input logic, output electrical;

endconnectrules;

specifies the connect module with the name a2d use split insertion and the d2a mod-
ules use merged insertion.

Setting the insertion mode to split together with enabling detailed discipline resolu-
tion leads to the highest number of connect modules being inserted into the design,
whereas the default mode for both (merged insertion and basic discipline resolution)
result in the fewest insertions. Because increasing numbers of interface components
generally slow the simulation, these default settings usually lead to the fastest simula-
tion.

For our PLL example whether the connect modules are merged or split makes no dif-
ference. But it makes a difference for the example in Figure 6. Using detailed disci-
pline resolution the logic inputs of d3 and d4 are connected to the same electrical net
a within block11. With the split insertion mode 2 separate connect modules between a
and both logic inputs would be inserted. In the default merged mode the discipline
conversion is handled by one common module.
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4.4  Modeling Connect Modules
The basic task of connect modules is the transformation of continuous information
into discrete, or visa versa. Consider an electrical-to-logic connect module: it has to
convert the continuous changing voltage value at its electrical input into an appropri-
ate logic state at its logic output. But there is more than just converting the voltage
value. The mixed signal simulation delivers the right results, comparable with the real
circuit, if the behavior of the connect module input is very close to the behavior of the
digital gate in the real circuit. To ensure the simulation mimics reality as closely as
possible, impedance, nonlinearity, supply voltage dependency and such have to be
considered. Also, at the digital output of the module, simply switching the logic state
when the input voltage crosses a defined threshold value might not be sufficient to
match the real circuit behavior. For instance, it might be important to model the influ-
ence of the rise and fall times of the analog input voltage, hysteresis effects, or the
dependency on the digital supply voltage. In general we can state that the same com-
promise must be made between model accuracy and simulation speed as with any
other model.

The full Verilog-AMS capabilities are available when creating these connect modules.
Every regular module that has two single ports, one in the analog domain and the
other one in the digital domain could be used as a connect module. However, a model
that is used for automatic insertion needs to have the connectmodule keyword instead
of the module keyword in the module header.

connectmodule a2d (d, a);
input a;
output d;
electrical a;
logic d;

With connection modules, either one port must be an input and the other an output, or
both must be inout. The ports may be given in either order. We have chosen to follow
the Verilog convention of putting the output port first.

4.4.1  Analog to Digital Connect Modules

A basic analog-to-digital connect module is shown in Listing 16. It monitors its ana-
log input and produces a digital 1 at its output if the input goes above the upper
threshold, vh. It produces a digital 0 at its output if the input goes below the lower
threshold, vl. The example demonstrates the use of the above analog event function
called inside of the digital always block to detect the threshold crossing
(5§6.8.3p206). The analog equation

l(in) <+ c *ddt(V(in));
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models the input capacitance of the connected digital gate (3§1.1p39). The connect
module parameters vl, vh and c can be overwritten when specifying this module in the
connectrules block:

connect a2d #(.vl(1.2), .vh(2.2), .c(1p));

This is an easy way to make connect modules fit the process parameters. The above
connect statement does not specify the input and output disciplines as in the previous
example. The discipline specification is optional. In this case the connect module a2d
is used for all mixed signal boundaries that match the input and output declaration of
the connect module header. The input in is declared as electrical and output out as
logic discipline. Thus it will be used automatically for the electrical to logic bound-
aries.

If the simulated design contains different types of logic, for instance 3 and 5 volt
logic, a good way for the user to control the insertion of connect modules is by assign-
ing different digital disciplines to logic operating at different supply voltages. How-
ever, there is no need to have separate connect modules available for insertion at the
boundaries of these different logic types to electrical. The same connect module can
be used for both, with parameters used to account for the different supply voltages.
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LISTING 16 Basic electrical to logic connect module.

`include "disciplines. vams"

connectmodule a2d (out, in);
parameter real vh = 2.7;
parameter real vl = 0.5;
parameter real c = 100f ;

// minimum voltage of a logic 1 (V)
// maximum voltage of a logic 0 (V)
// input capacitance (F)

input in;
output out;
electrical in;
reg out;
logic out;

// when analog rises above the high threshold, digital becomes 1
always @(above(V(in) – vh))

out = 1 'b1;

// when analog falls below the low threshold, digital becomes 0
always @(above(vl – V(in)))

out = 1'b0;

analog
l(in) <+ c*ddt(V(in));

endmodule



4 Structural Verilog-AMS

connect a2d input electrical, output logic5;
connect a2d #(.vl(0.9), .vh(2.1)) input electrical, output logic3;

The first statement defines that the module with the name a2d is used at electrical to
logic5 boundaries using the default parameter values declared in the module for the
thresholds. The second connect statement defines that the same module is automati-
cally inserted at the electrical to logic3 boundaries with different values for vl and vh.

The connect module example in Listing 17 contains an important enhancement. It
takes the input voltage range between the two voltage thresholds into account. If the
input voltage remains in the range between the low threshold vl plus a cushion of dv
and the high threshold vh minus a cushion of dv longer than a certain delay time dt the
module outputs a logic x state. This is illustrated in Figure 9. This model is appropri-
ate if there is a risk that the rise or fall times at the inputs of the logic gates might not
be fast enough to ensure clean switching.

If the input voltage rises above the vlx = vl + dv threshold or if it falls below the vhx =
vh – dv threshold the register inXregion is set to 1 with the always blocks

always @(above(vhx – V(in))) inXregion = 1;
always @(above(V(in) – vlx)) inXregion = 1;

which trigger another always block

always @(posedge inXregion) begin : XRegionDelay

This is a named block (5§7.2.1p210). The block name follows the colon after the
begin keyword. After a wait time equal to dt the output turns to x. However, if the
input voltage falls below the vl threshold or rises above the vh threshold in the mean
time, then inXregion is reset to 0 within another set of always blocks, which triggers
the always block
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`timescale 1ns / 1ps
`include “disciplines.vams”

connectmodule a2d (out, in);
parameter real vh = 2.7; // minimum voltage of a logic 1 (V)
parameter real vl = 0.5; // maximum voltage of a logic 0 (V)
parameter real c = 100f; // input capacitance (F)
parameter real dt = 1n; // time in x region before x is produced (s)
parameter real dv = 0.2; // voltage between threshold and x region (V)
input in;
output out;
electrical in;
reg out;
logic out;

parameter real vlx = vl + dv;
parameter real vhx = vh – dv;
reg inXregion;

initial inXregion = 0;

always @ (above(V(in) – vh)) begin
out = 1'b1;
inXregion = 0;

end

always @(above(vl – V(in))) begin
out = 1'b0;
inXregion = 0;

end

always @(above(vhx – V(in))) inXregion = 1;
always @(above(V(in) – vlx)) inXregion = 1;

always @(posedge inXregion) begin : XRegionDelay
#(dt/1.0n) // calculate how many time units are equal to the dt time
out = 1'bx;
inXregion = 0;

end
always @(negedge inXregion) disable XRegionDelay;

analog
l(in) <+ c*ddt(V(in));

endmodule
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always @(negedge inXregion) disable XRegionDelay;

that disables the named block XRegionDelay (5§7.2.1p210). Thus, in this case, out
would not turn to x after the dt time. That means, if the input voltage crosses the for-
bidden input range within a time shorter than dt, the output switches between the 0
and the 1 states directly. But if the transition takes longer than dt, an x state would be
produced at the module output in between the 0 and the 1.

4.4.2 Digital to Analog Connect Modules

A simple digital-to-analog connect module is constructed as shown in Listing 18. In
this model the digital input controls both the output voltage and resistance of the con-
verter. In this way, the z state can be accurately modeled. The behavior of the module
is simple. The input signal is monitored, and the value of the discrete real variables v
and r are updated to the appropriate values initially and whenever the input changes.
The values of v and r are then used in the analog process to model the analog output.
Both v and r are passed through transition functions to add a finite transition time
whenever their values change (5§4.6.4p180).

4.4.3 Bidirectional Connect Modules

Especially in large SOC designs bidirectional mixed-domain interfaces are required.
There are blocks, represented as analog behavior or structure, connected to bidirec-
tional communication data busses. That is, the analog block receives information and
is also able to send information over the same connection. On the digital side there
could be several blocks with inout connections at this bus. Each bus wire needs an
inout connection module. The difficulty is that the connection module for automatic
insertion during the elaboration phase can only have one pin on the digital side. That
is, the connect module needs to be able to read and write at the same time via one sin-
gle port to ensure true bidirectional behavior.

The importance of this can be seen by considering an application of the digital-to-ana-
log connect module of Listing 18. With this connect module there is no feedback from
the analog side back to the digital side: the connection is unidirectional. This can be
problematic if the signal level on the analog side of the connect module never
achieves the desired value. For example, if the connect module receives as input a log-
ical 1, but because of loading effects, the output voltage remains near 0 V, then the
analog and digital representations of the same signal are inconsistent. This inconsis-
tency would manifest itself as errors in the case where part of the system is monitor-
ing the signal value on the analog side, and where another part is monitoring the
signal on the digital side, as is the case shown in Figure 10.

135

4 Structural Verilog-AMS



LISTING 18  Simple digital-to-analog connect module.

`include “disciplines.vams”
`timescale 1ns / 10ps

connectmodule d2a (out, in);
parameter real v0 = 0.0;
parameter real v1 = 5.0;
parameter real vx = 2.5;
parameter real vz = 5.0;
parameter real r0 = 1k from (0:inf);
parameter real r1 = 1k from (0:inf);
parameter real rx = 100 from (0:inf);
parameter real rz = 1M from (0:inf);
parameter real tr=1n from [0:inf);
parameter real tf=1n from [0:inf);
input in;
output out;
logic in;
electrical out;
real v, r;

// output voltage for a logic 0 (V)
// output voltage for a logic 1 (V)
// output voltage for a logic x (V)
// output voltage for a logic z (V)
// output resistance for a logic 0 (Ohms)
// output resistance for a logic 1 (Ohms)
// output resistance for a logic x (Ohms)
// output resistance for a logic z (Ohms)
// rise time (s)
// fall time (s)

assign in = in; // connect digital drivers and receivers

initial begin
case(in)

1'b0: begin v = v0; r = r0; end
1'b1: begin v = v1; r = r1; end
1'bx: begin v = vx; r = rx; end
1'bz: begin v = vz; r = rz; end

endcase
end

always @in begin
case(in)

1'b0: begin v = v0; r = r0; end
1'b1: begin v = v1; r = r1; end
1'bx: begin v = vx; r = rx; end
1'bz: begin v = vz; r = rz; end

endcase
end

analog
V(out) <+ transition(v, 0, tr, tf) + transition(r, 0, tr, tf)*I(out);

endmodule
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To resolve the inconsistency, the connect module must pass information in both direc-
tions. How can we feed information about the analog solution back to the digital side
and use that information to change the value observed on the digital net? The Verilog-
AMS language supports this with the driver/receiver segregation feature. Digital
drivers and digital receivers are separated on digital wires connected to connect mod-
ules as shown in Figure 11. Effectively, the net is split with all the drivers attached to
one side and all the receivers attached to the other. The connect module then acts as
the bridge. As such, the connect module must drive the net, even if the digital port is
an input port, and in doing so it is driving the receivers. In the unidirectional d2a mod-
ule shown in Listing 18 we simply pass the resolved value of the driven portion of the
net on to the portion being monitored by the receivers with

assign in = in;

A bidirectional connect module instead combines the resolved value of the driven
portion of the digital net with the resolved signal level on the analog side of the con-
nect module to determine the value that is passed on to the receivers monitoring the
digital net. The bidirectional connect module of Listing 19 uses this feature.

From Digital to Analog. Assuming for the moment there is only one logic block con-
nected to the wire, the connection module inserted for this wire reads what the digital
block drives on the net. The state could be an active 0 or 1, it could be undefined x, or
it could be undriven, z. This information must be translated to analog and applied with
the right driver strength at the analog output node. The 0 and 1 states should apply an
appropriate voltage v with a relatively small output resistance r to the analog output
node and z should apply a voltage with a large output resistance (see Figure 12). The
undefined x state is handled in a special way. If driven to the logic input of the connec-
tion module, an x is directly applied to the digital receivers. In this case the voltage
source and resistance applied to the analog output node will be set by user-defined
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parameters. Because there is no undefined state in the continuous analog domain, it is
the choice of the simulation user to decide which output voltage and resistance should
be used in this case. The examples in this book use an intermediate value for the volt-
age and a very small output resistance in an attempt to force the analog circuitry to see
an indeterminate voltage level independent of loading.

From Analog to Digital. The analog solver of the mixed signal simulator resolves
operating conditions of the analog output node of the connection element in the con-
text of the larger analog circuit to which it is connected. The resulting port voltage
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V(a) and port current I(a) on the analog side of the wire are used when determining
the logical value at this port. The resolved logical value of the analog port is then used
when determining dout, the value that is fed back to the receivers being driven by the
digital port of the connection module. If the voltage at the analog connection is below
the 0-threshold or above the 1-threshold, the 0 or 1 state is assigned to the digital inout
port accordingly. If v leaves the 0 or 1 range perhaps after an edge of the digital input
signal was detected, dout stays unchanged for the first moment. If the voltage remains
in the x-range for longer than a preset time limit xdelay, the output dout will change to
x and stay x until the voltage moves back into the 0 or 1 range. This way transitions
that are too slow are detected. The z-condition at the analog connection module node
is detected by using the port current. Detection is possible only if the designated z-
voltage recognition level is within the x-range. If this is the case when a z is detected
at the digital input and the absolute current into the analog connect module port is less
than a certain limit, then dout will be set to z.

The statement

assign d = dout;

in Listing 19 applies the digital output state to the receivers connected to the logic
inout port of the connect module. Cross statements are used for a precise detection of
the voltage and the current threshold crossings related to the analog connect module
port. The signals vstate and istate are used to monitor the analog output voltage and
current (see Tables 4 and 5). The signal inXrange is used to show the analog voltage
being in the x-range but for not longer than the time limit parameter xdelay. When the
connect module reads an undefined x on the logic side it also applies this x state back
to the receivers. Table 3 shows how dout, which is fed back to the receivers, depends
on the digital input d as well as the istate and vstate signals.
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The above example contains a minimum set of bidirectional connect module features.
Enhancing this model means adding features and bringing the model closer to reality.
The user should be aware that adding features may also result in lowering the simula-
tion speed. It is usually helpful to have a variety of connect modules with different
detail levels available. That way the connection module could be chosen to provide
the best trade-off between accuracy and speed.

One of the first enhancements you might think to add is power supply dependency for
the build-in thresholds and the output voltage levels. This could be done easily by
binding the connect module parameters to a global power supply parameter. This way
a static power supply dependency is realized. If the simulation of the design requires
dynamic power supply dependency in the connect module, it can be implemented by
referencing or connecting to global power supply nodes from inside the connect mod-
ule using hierarchical names (5§9.4p230). Effects like power on/off behavior or tran-
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LISTING 19 Bidirectional connect module.

ìnclude “disciplines.vams”
`timescale 1ns / 10ps

connectmodule bidir(a, d);
parameter real v0 = 0.0;
parameter real v1 = 5.0;
parameter real vx = 2.5;
parameter real vz = 5.0;
parameter real r0 = 1k from (0:inf);
parameter real r1 = 1k from (0:inf);
parameter real rx = 100 from (0:inf);
parameter real rz = 1M from (0:inf);
parameter real tr=1n from [0:inf);
parameter real tf=1n from [0:inf);
parameter real vl = 0.5;
parameter real vh = 2.7;
parameter real maxzi = 0.1u;
parameter real xdelay = 1;
parameter real zdelay = 0.5 * xdelay;

inout a, d;
electrical a;
logic d;
reg dout;
logic dout;
real v, r;
integer vstate;
reg istate, inXrange, outOfZcurrent;

assign d = dout;

initial begin
dout = 1'bz; // set the digital output to z until analog voltage is resolved
vstate = 2; istate = 0; inXrange = 0; outOfZcurrent = 0;
case (d)

1'b0: begin v = v0; r=r0; end
1'b1: begin v = v1; r =r1;  end
1'bx: begin v = vx; r=rx; dout=1'bx; end
1'bz: begin v = vz; r=rz; end

endcase

// output voltage for a logic 0 (V)
//output voltage for a logic 1 (V)
//output voltage for a logic x (V)
// output voltage for a logic z (V)
//output resistance for a logic 0 (Ohms)
//output resistance for a logic 1 (Ohms)
//output resistance for a logic x (Ohms)
// output resistance for a logic z (Ohms)
//rise time (s)
//fall time (s)
//maximum voltage of a logic 0 (V)
//minimum voltage of a logic 1 (V)
//absolute max current allowed in HiZ state
//time in the Xrange before dout gets x
//max time of current > maxzi before
//going out of z state

end

Continued on next page.
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LISTING 19 Bidirectional connect module.

Continued from previous page.

always @d begin
case(d)

1'b0: begin v = v0; r = r0; end
1'b1: begin v = v1; r = r1; end
1'bx: begin v = vx; r = rx; dout=1'bx; end
1'bz: begin v = vz; r = rz; end

endcase
end

always @(above(V(a) – vh)) begin vstate = 1; inXrange = 0; end
always @(above(vh – V(a))) inXrange = 1;
always @(above(V(a) – vl, 1)) inXrange = 1;
always @(above(vl – V(a))) begin vstate = 3; inXrange = 0; end

always @(posedge inXrange) begin : XRangeDelay
#xdelay
vstate = 2;
inXrange = 0;

end
always @(negedge inXrange) disable XRangeDelay;

always @(posedge outOfZcurrent) begin : outOfZCurrentDelay
#zdelay
istate=1;
outOfZcurrent=0;

end
always @(negedge outOfZcurrent) disable outOfZCurrentDelay;

always @(above(abs(l(a)) – maxzi)) outOfZcurrent = 1;
always @(above(maxzi–abs(l(a)))) begin

istate=0;
outOfZcurrent=0;

end

always @ (vstate or istate or d) begin
case(vstate)

1: dout = (d===1'bx)? 1'bx: 1'b1;
2: dout = ((istate === 1'b0) & (d===1'bz)) ? 1'bz : 1'bx;
3: dout = (d === 1'bx) ? 1'bx : 1'b0;

endcase
end

Continued on the next page.
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LISTING 19 Bidirectional connect module.

Continued from the previous page.

analog begin
V(a) <+ transition(v,0,tr,tf) + transition(r,0,tr,tf) * l(a);

end
endmodule

sient power supply noise become visible. The modeling must be done in the analog
block if the remote voltage varies in continuous time. One might use code like the fol-
lowing to model this effect.

analog begin
case (d)

1'b0: v = V(top.vdd);
1'b1: v = V(top.gnd);
1'bx: v = vx;
1'bz: v = vz;

endcase

V(a) <+ v + r * l(a);
end

This assumes that top.vdd and top.gnd are the global supply and ground nodes, that vx
and vz are parameters, and that d and r are set appropriately earlier in the connect
module.

Another possible enhancement is to make the characteristics of the analog port depen-
dent on the number and the states of the drivers at the digital side. Such a model is
illustrated in Figure 13 and given in Listing 20.

Information about the digital drivers on a digital net can be accessed from inside of
the connect module. The driver access function
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$driver_count(wire name)

returns the number of drivers connected to the wire. It is generally best to ask for the
number of drivers on a wire in the initial block, because the number of drivers will not
change during the simulation. The function

$driver_state(wire name, driver index)

returns the status of the specified driver, and the function

driver_update(wire name)

returns an event whenever at least one of the connected drivers on this net changes its
state.

Conceptually, the analog port of the connect
module is driven using the circuit shown on the
right. and represent the pull-up and pull-
down voltages. They remain fixed. and are
the pull-up and pull-down resistances, their val-
ues are changed depending on the number of dig-
ital drivers and their state.

where , and are parameters, and are the number of
drivers whose state is 0, 1, x and z respectively, and || represents the parallel combina-
tion of resistor values (if then

From an implementation perspective, using this particular struc-
ture is inefficient because it requires two internal nodes. Instead,
the Thevenin equivalent (right) is used where

It may seem like this implementation also uses an internal node, but Verilog-A/MS
allows the two branches to be combined into one, eliminating the extra node. Often
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What’s Next

times even more efficiency can be gained by switching to a Norton equivalent, but for
simplicity we will stay with the Thevenin equivalent.

As before, the port voltage and port current are used to determine the logical state
applied to the digital receivers.

Verilog-AMS provides additional $driver_... functions besides the ones described
here that allow you to access additional information about the drivers, such as their
type, their strength, and information about known upcoming transitions. These func-
tions allow you to build even more sophisticated connect modules. Information about
these functions can be found in the Verilog-AMS LRM [28].

What’s Next

This chapter introduced the discrete-event behavioral modeling for both digital and
mixed-signal systems, and it also covered mixed-signal structural modeling. At this
point, all of the important concepts of Verilog-AMS have been introduced. However,
many details have been left out to simplify the presentation. These details can be
found in the next chapter.
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connectmodule bidir(a, d);
parameter real v0 = 0.0;
parameter real v1 = 5.0;
parameter real ruon = 1k from (0:inf);
parameter real ruoff = 1M from (0:inf);
parameter real rdon = 1k from (0:inf);
parameter real rdoff = 1M from (0:inf);
parameter real tr=1n from [0:inf);
parameter real tf=1n from [0:inf);
parameter real vl = 0.5;
parameter real vh = 2.7;
parameter real maxzi = 0.1u;
parameter real xdelay = 1;
parameter real zdelay = 0.5 * xdelay;

// output voltage for a logic 0 (V)
// output voltage for a logic 1 (V)
// pull-up resistance when 1 or
// pull-up resistance when 0 or
// pull-down resistance when 1 or
// pull-down resistance when 0 or 
// rise time (s)
// fall time (s)
// maximum voltage of a logic 0 (V)
// minimum voltage of a logic 1 (V)
II absolute max current allowed in HiZ state
// time in the Xrange before dout gets x
II max time of current > maxzi before
// going out of z state

LISTING 20 Bidirectional connect module with driver access.

`include “disciplines.vams”
`timescale 1ns / 10ps

Chapter 4 Mixed-Signal Modeling

inout a, d;
electrical a;
logic d;

parameter real guon = 1.0/ruon; // these are local constants
parameter real guoff = 1.0/ruoff; // they should not be overridden by the user
parameter real gdon = 1.0/rdon;
parameter real gdoff = 1.0/rdoff;
real v, r, gu, gd;
integer vstate;
reg istate, inXrange, outOfZcurrent;
integer DrCount, i;
integer XCount, ZCount, LCount, HCount;
reg dout;
logic dout;

assign d = dout;

initial begin
dout = 1'bz; //set the digital output to z until analog voltage is resolved
vstate = 2; istate = 0; inXrange = 0; outOfZcurrent = 0;
DrCount = $driver_count(d);
XCount = 0; ZCount = 0; LCount = 0; HCount = 0;

Continued on the next page.
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LISTING 20 Bidirectional connect module with driver access.

Continued from the previous page.

for (i = 0; i < DrCount; i = i + 1)
case($driver_state(d,i))

1'b0: LCount = LCount+1;
1'b1: HCount=HCount+1;
1'bx: begin XCount = XCount+1; dout=1'bx; end
1'bz: ZCount = ZCount+1;

endcase
gu = (XCount+HCount)*guon + (ZCount+LCount)*guoff;
gd = (XCount+LCount)*gdon + (ZCount+HCount)*gdoff;
r= 1.0/(gu + gd);
v = (gu*v1 + gd*v0)/(gu + gd);

end

always @ (driver_update(d)) begin
XCount = 0; ZCount = 0; LCount = 0; HCount =0;
for (i = 0; i < DrCount; i = i + 1)

case($driver_state(d, i))
1'b0: LCount = LCount+1;
1'b1: HCount = HCount+1;
1'bx: begin XCount = XCount+1; dout = 1'bx; end
1'bz: ZCount = ZCount+1;

endcase
gu = (XCount+HCount)*guon + (ZCount+LCount)*guoff;
gd = (XCount+LCount)*gdon + (ZCount+HCount)*gdoff;
r = 1.0/(gu + gd);
v = (gu*v1 + gd*v0)/(gu + gd);

end

always @(above(V(a) – vh)) begin vstate = 1; inXrange = 0; end
always @(above(vh – V(a))) inXrange = 1;
always @(above(V(a) – vl)) inXrange = 1;
always @(above(vl – V(a))) begin vstate = 3; inXrange = 0; end

always @(posedge inXrange) begin : XRangeDelay
#xdelay
vstate = 2;
inXrange = 0;

end
always @(negedge inXrange) disable XRangeDelay;

Continued on the next page.
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LISTING 20 Bidirectional connect module with driver access.

Continued from the previous page.

always @(posedge outOfZcurrent) begin : outOfZCurrentDelay
#zdelay
istate = 1;
outOfZcurrent = 0;

end
always @(negedge outOfZcurrent) disable outOfZCurrentDelay;

always @(above(abs(l(a)) – maxzi)) outOfZcurrent=1;
always @(above(maxzi – abs(l(a)))) begin

istate = 0;
outOfZcurrent = 0;

end

always @(vstate or istate or d) begin
case(vstate)

1: dout=(d === 1'bx)? 1'bx: 1'b1;
2: dout= ((istate === 1'bO) & (d === 1'bz)) ? 1'bz : 1'bx;
3: dout= (d === 1'bx) ? 1'bx : 1 'b0;

endcase
end

analog begin
V(a) <+ transition(v,0,tr,tf) + transition(r,0,tr,tf) * l(a);

end

endmodule
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Language
Reference5

1 Basics
Verilog-A/MS is a case sensitive language.

Spaces, tabs, and newlines are considered white space and are ignored except when
found in strings.

1.1 Comments
Comments are text added to the model for purposes of documentation. They are
ignored by the simulator that implements the model.

Single line comments start with // and end at the end of the line.

// this is a single line comment

Block comments begin with /* and end with */.

/*
* This is a block comment
*/

Block comments may not be nested.

1.2 Identifiers
An identifier is used to give an object a unique name so it can be referenced. An iden-
tifier can be any sequence of letters, digits, dollar signs ‘$’, and the underscore char-
acters ‘_’. The first character of an identifier cannot be a digit or ‘$’; it can be a letter
or an underscore.

Examples: clk, out_p, bus2, n$12

Escaped identifiers start with the backslash character ‘\’ and end with white space
(space, tab or newline). They provide a means of including any of the printable ASCII
characters in an identifier. Neither the leading back-slash character nor the terminal-
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ing white space is considered to be part of the identifier. Therefore, an escaped identi-
fier \out is treated the same as a non-escaped identifier out.

Examples: \out+, \/x1/n1, \\x1\n1, \{a,b}, \V(p,n)

1.3 Keywords
Keywords are predefined non-escaped identifiers that are used to define the language

constructs. The list of reserved keywords for Verilog-AMS is shown in Table 1. Pre-

ceding a keyword with an escape character (\) causes it to be interpreted as an escaped

identifier.
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1.4 Compiler Directives
The ` character (referred to as a tick, an open quote, or a grave accent) introduces a
language construct used to implement compiler directives. The behavior dictated by a
compiler directive takes effect as soon as the compiler reads the directive. The direc-
tive remains in effect for the rest of the compilation unless a different compiler direc-
tive specifies otherwise. A compiler directive in one file can therefore control
compilation behavior in multiple description files.

Verilog-AMS supports the following compiler directives.
`default_discipline `else `resetall
`default_transition `endif `timescale
`define `ifdef `undef

ìnclude

Defines (`define) give a name to a string that can substitute for a string of characters.
The name is then referred to as a macro. Any valid identifier, including keywords
already in use, can be used as a name. Once defined, the macro is referenced using its
name preceded by a tick. Undefines (`undef) remove the macro.

Example:

electrical [0:`size–1] out;

Includes (`include) are replaced by the contents of a file. It takes the filename as an
argument, which can either be specified with a relative or absolute path to the file.
Included files may include other files, etc.

Example: `include “disciplines.vams”

Sections of code can be conditionally ignored using the `ifdef directive. It takes a
macro name as an argument. If the argument is currently undefined, the text that fol-
lows is ignored up to a matching `else or `endif and accepted otherwise. If `else is
used, then the text between it and the matching `endif is ignored if the argument is
defined, and accepted otherwise.

Verilog-AMS supports a predefined macro to allow modules to be written that work
with both IEEE 1364-1995 Verilog HDL and Verilog-AMS. The predefined macro is
called __VAMS_ENABLE__.
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Example:
`ifdef_ _VAMS_ENABLE_ _

parameter integer del = 1 from [1:100];
`else

parameter del = 1;
`endif

When the `resetall compiler directive is encountered during compilation, all compiler
directives are set to their default values. This is useful for ensuring that only those
directives that are desired when compiling a particular source file are active. To do so,
place `resetall at the beginning of each source text file, followed immediately by the
directives desired in the file.

The `timescale compiler directive defines the time unit and the time precision for the
modules that follow it. The time unit and time precision is specified using either 1,10,
or 100 followed by a measurement unit of either s, ms, us, ns, ps, or fs, which repre-
sents seconds, milliseconds, microseconds, nanoseconds, picoseconds, or femptosec-
onds.

Example:
`timescale 10ns / 1ns

The first value given specifies the units of time and the second specifies the precision.
The values affect the way delays are specified and the return value from the $realtime
function. Both are rounded to the time resolution and given in multiples of the time
unit. Thus, with the specification given in the example above, #55.79 corresponds to a
delay of 558ns (55.79 × 10 ns rounded to the nearest 1 ns).

2 Data Types
This section starts with a discussion of the various types of constants and variables
available in Verilog-A/MS, and then presents signal types, including a discussion of
natures and disciplines.

2.1 Constants

2.1.1 Integers

Underscores are ignored in numbers, so 42_839 is equivalent to 42839.

Examples: 124, +124, –124, 42_839
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2 Data Types

Except in Verilog-A, integer constants can be expressed in decimal, hexadecimal,
octal, or binary. To do so, use sb'fn; where s is an optional sign, either ‘+’ or ‘–’; b is
an optional decimal number that indicates the size of the constant in bits; f is the base
format and is either ‘d’, ‘h’, ‘o’, or ‘b’ for decimal, hexadecimal, octal, or binary; and
n is the number in the specified base. In hexadecimal numbers the letters ‘a’ through
‘f’ represent the digits 10 through 15. Letters in integer constants can be either lower
or upper case.

Examples:
63 unsized decimal number
'd63 unsized decimal number
'h3f unsized hexadecimal number
'o77 unsized octal number
'b11_1111 unsized binary number
12'h3f 12 bit hexadecimal number
–'h3f negative unsized hexadecimal number

The letters ‘x’ and ‘z’ can be given to denote unknown and high impedance digits in
all but decimal numbers, and ‘_’ is ignored. Sized constants for which the size is
larger than the given number are padded on the left with zeros unless the first digit of
the given number is an x or z, which are padded with the x or z. The number is trun-
cated on the left if the size is smaller than the given number.

Examples:
12'hx
64'o0
8'hfx
8'hfffx
8'hx

a 12 bit unknown hexadecimal number
a 64 bit octal 0 (zero padded)
equivalent to 8'b1111_xxxx
equivalent to 8'b1111_xxxx (truncated)
equivalent to 8'bxxxx_xxxx (x padded)

2.1.2 Reals

Real numbers must either include a decimal point or a scale factor. If a decimal point
is present, there must be digits on both sides. So .12, 9., 4.eE3, and .2e–7 are not valid
numbers. Underscores are ignored in real numbers. Scale factors are given in Table 2.

Examples: 3.14, 0.1, 1.2E12, 1.30e–2, 236.123_763_e–12, 1.3u, 5.46K
Predefined numbers in the form of compiler directives are included in the file con-
stants.vams and listed in Table 3. Mathematical constants are denoted with a `M_ pre-
fix and physical constants use the `P_ prefix.
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Strings are a sequence of characters enclosed in double quotes. Table 4 lists the
escape sequences used to enter special characters into strings.

Example: “Hello World !\n”

2.1.4 Vectors

A constant vector is created using the concatenate operator, which consists of bal-
anced braces surrounding a sequence of arguments given as expressions. It simply
combines its arguments into an array. The individual arguments may be scalars or
vectors, and the end result is a vector whose length equals the sum of the lengths of
each argument.

Examples:
{4, 8, 12, 16, 20}
{4, 2*4, 3*4, 4*4, 5*4}
{4.0, 8.0, {12.0, 16.0, 20.0}}

In addition, the replicate operator can be used to specify a sequence of repeated val-
ues. The replication operator is similar to the concatenation operator, except the lead-
ing brace is preceded with an integer count and then the whole construct is
surrounded with another set of braces. So {0, {2{ 1, 2}}} is equivalent to (0, 1, 2, 1,
2}

Vectors come in many forms. The examples above are numeric vectors, which can
consist of either integers or real numbers. One can also have vectors of bits, nets,
branches, instances and registers (referred to as memories).

2.1.3    Strings
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2.2 Variables
Variables can be thought of as named registers that contain a value of a particular
type. They are initialized at the beginning of simulation to either zero or unknown as
appropriate and cannot be explicitly initialized when declared. They retain their value
until changed by way of an assignment statement. As such, they are different from
variables in programming languages such as C in that they retain their value even
when the flow of execution appears to leave their context (5§6.2.1p197).
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A register or reg declaration declares arbitrarily sized logic variables (registers are not
supported in Verilog-A). The default size is one bit.

Examples:
reg enable;
reg [15:0] bus;

In these examples, enable is a one bit variable and bus is a 16 bit variable. The index
of the most significant bit is given first in the range specification, and the index of the
least significant bit is given last. Any valid decimal integer may be given as an index
bound.

Logic variables hold logic values. A one bit logic variable can be one of 4 possible
values, shown in Table 5. Logic variable (registers) are initialized to x.

An integer declaration declares one or more variables of type integer. These variables
can hold values ranging from to Arithmetic operations performed on inte-
ger variables produce 2’s complement results. Integers are initialized at the start of a
simulation depending on how they are used. Integer variables whose values are
assigned in an analog process default to an initial value of zero (0). Such variables are
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said to be captured by the analog kernel. Integers that are captured by the analog ker-
nel can only hold valid numbers (they may not contain any x- or z-valued bits). Integer
variables whose values are assigned in a digital context default to an initial value of x.
These variables are said to be captured by the discrete kernel. Such integers are imple-
mented as 32-bit regs. As such, the values they hold may contain bits that are x or z.

Example: integer count, ub;

A real declaration declares one or more variables of type real. The real variables are
stored as 64-bit quantities, as described by IEEE STD-754-1985, an IEEE standard
for double precision floating point numbers. Real variables are initialized to zero (0)
at the start of a simulation.

Example: real save, midpoint;

Arrays of integers and reals can be declared using a range that defines the upper and
lower indices of the array. Both indices are specified with constant expressions that
may evaluate to a positive integer, a negative integer, or to zero.

Example: real result[0:7];

A type of integer, genvar, has restricted semantics that allow it to be used in static
expressions. A genvar can only be assigned within the control section of a for loop.
Assignments to the genvar variable can consist only of expressions of static values
(expression involving only parameters, literal constants, and other genvar variables).

Example: genvar i;

2.2.1 Vectors

Individual members of a vector can be accessed by applying an index to a vector. An
index is applied by following the identifier of the vector with an expression enclosed
in balanced brackets. For example, x[3] accesses member 3 of the vector x (whether
this is actually the third member of the vector depends on how x is declared).

Indexing of bit vectors, either in the form of vector registers or vectors of the tradi-
tional Verilog net types (see Table 8 on page 165) is often referred to as a bit-select
process. In addition, bit vectors have an additional functionality not associated with
other types of vectors that is referred to as a part-select process. In this case, a range
of indices can be specified by placing a pair of expressions within the brackets sepa-
rated by a colon. For example, x[0:3] accesses members 0 through 3 of x.

2.3 Parameters
Parameters are declared with a statement of the form
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parameter <real|integer> name=expr <rangeLimit>;

The parameter keyword is followed by an optional type, either real or integer. The
name of the parameter is followed by an initializing expression that when evaluated
gives the default value of the parameter. More than one parameter of the same type
can be declared in the same statement by adding more names (with initializer and
optional range limit). If the type is not given explicitly, it is inferred from the type of
the initializing expression. The range limit takes the form of one or more of the fol-
lowing

<from|exclude> [lbExpr:ubExpr] lbExpr parameter ubExpr
<from|exclude> (lbExpr:ubExpr] lbExpr < parameter ubExpr
<from|exclude> [lbExpr:ubExpr) lbExpr parameter < ubExpr
<from|exclude> (lbExpr:ubExpr) lbExpr < parameter < ubExpr
<exclude> expr parameter expr

When the expressions are given as a pair separated by a colon, the first expression
(lbExpr) is the lower bound of the range, and the second (ubExpr) is the upper bound.

Examples:
parameter bits=8, vdd=3.0;
parameter thresh=vdd/2;
parameter integer size=16;
parameter real td=0;
parameter integer bits = 8 from [1:24];
parameter integer dir = 1 from [-1:1] exclude 0;
parameter real period=1 from (0:inf);
parameter real toff=0 from [0:inf), td=0 exclude 0;
parameter real Vmin=0;
parameter real Vmax=Vmin+1 from (Vmin:inf);

Expressions must be written in terms of either literal constants or previously defined
parameters.

Parameter values on instances of modules can be overwritten either by specifying a
value when instantiating the module (5§9.2p227), or by using a defparam statement
(5§9.4.2p233).

Parameters can also be arrays, in which case the array bounds are given after the
parameter name and the parameter is initialized using an array. If the array size is
changed via a parameter assignment, the parameter array must be assigned an array of
the new size from the same module as the parameter assignment that changed the
parameter array size.

Example:
parameter real poles[0:3] = {1.0, 3.198, 4.554, 12.0};
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2.4  Natures and Disciplines
A nature is a collection of attributes that are shared by a class of signals. The
attributes include the units (units), name used when accessing the signal (access),
absolute tolerance (abstol), related natures (ddt_nature, idt_nature), and perhaps user
or implementation defined attributes. Table 6 lists the natures included in the file dis-
ciplines.vams.
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Example:
nature Current

units =  "A";
access = I;
abstol = 1p;
idt_nature = Charge;

endnature

The absolute tolerances on the predefined natures can be overwritten by using `define
to create a macro with the appropriate name (also given in Table 6) with the desired
value.

Example:
`define VOLTAGE_ABSTOL 1e–3
`define CURRENT_ABSTOL 1e–9
`include "disciplines.vams"

Natures can also be derived from other natures, either directly or through a discipline.
When doing so it is also possible to override the attributes.

Examples:
nature HighVoltage : Voltage

abstol = 1m;
endnature

nature HighCurrent : electrical.flow
abstol = 1n;

endnature

A discipline is a type used when declaring analog nodes, ports, or branches. They can
also be used to declare digital wires and registers. A discipline may include the speci-
fication of a domain, either continuous or discrete, and up to two natures. At least one
nature is required for continuous disciplines, for the potential. Continuous disciplines
with a single nature are referred to as signal-flow disciplines. Conservative disciplines
would also have a nature for the flow. Table 7 lists the disciplines available from dis-
ciplines.vams.

Example:
discipline electrical

domain continuous;
potential Voltage;
flow Current;

enddiscipline

Continuous time signals belong to the continuous domain, whereas digital and dis-
crete-event signals belong to the discrete domain. Signals in the continuous domain
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are real valued; signals in the discrete domain can either be binary (0,1, x, or z), inte-
ger or real valued. Unless otherwise specified, the domain of a discipline is taken to
be continuous.

The attributes of a nature can be overridden from within a discipline.

Example:
discipline cmos

potential Voltage;
potential.abstol = 10u;
flow Current;
flow.abstol = 100p;

enddiscipline

2.4.1 Compatible Disciplines

Natures associated with the same base nature are compatible. Disciplines are compat-
ible when their corresponding natures are compatible. Nodes, ports, and branches can
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be connected together only if their disciplines are compatible, and the two terminals
on each of a branch must have compatible disciplines.

At each node there may be many different values of the absolute tolerance abstol.
This may be because the various ports connected to an undeclared node have differ-
ent, yet compatible, natures for either the potential, the flow, or both. Even if the
natures are identical, the value of abstol may be overridden in the discipline of one or
more of the ports. In such cases, all of the absolute tolerances must be satisfied at the
node. This is equivalent to simply applying the smallest tolerance value for all calcu-
lations involving such nodes.

2.4.2 Empty Disciplines

It is possible to define a discipline with no natures. These are known as empty disci-
plines and they can be used in structural descriptions to let the components connected
to a net determine which natures are to be used for the net.

Such disciplines may have a domain binding or they may be domain-less, allowing
the domain to be determined by the connectivity of the net (4§4.2p123).

Example:
discipline interconnect

domain continuous;
enddiscipline

2.4.3 Discipline of Wires and Undeclared Nets

A module can have nets that are undeclared. It might also have discrete nets declared
without disciplines. They might be undeclared if they are bound only to ports in mod-
ule instantiations. They might be declared without disciplines if they are declared
using wire types (wire, tri, wand, wor, etc.). In these cases, the net is treated as having
an empty discipline. If the net is referenced in behavioral code, then it is treated as
having an empty discipline with a domain binding of discrete, otherwise it is treated
as having an empty discipline with no domain binding. In these cases the actual disci-
pline used for the net is determined by discipline resolution based on what is con-
nected to the net.

2.4.4 Discipline Resolution

A node can consist of several nets, each existing in different modules and perhaps
each with their own discipline declarations (5§2.5p164). If within a module a net is
undeclared, it would take its discipline from that to which it is connected. Occasion-
ally with discrete nets it is not possible to determine a discipline for a net by what it is
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connected to or what accesses it, in which case it is assigned the default discipline (as
specified by `default_discipline), or if no default is defined, the empty discipline.

If everything that connects to an undeclared net has the same discipline, then the net
will take that discipline. If it connects to ports of different, yet compatible, disci-
plines, then some additional information is needed to resolve the discipline of the net.
However, in the case where the net does not cross domains, it is not necessary to actu-
ally resolve the discipline. For discrete nets the discipline is only used when inserting
connect modules (4§4.3p128). For undeclared continuous nets the discipline specifies
the units and tolerances of the net. Since only ports with compatible continuous disci-
plines can be connected to the same net the units are not an issue as compatible disci-
plines all have the same units. The tolerances are resolved, as stated in Section 2.4.1,
by simply applying all of the tolerances to the net.

There are several situations where it is either desirable or necessary to fully resolve
the discipline of an undeclared net. For the cases where all the disciplines associated
with a net are compatible, it might be desirable if the default behavior of using the
tightest tolerance from any discipline associated with the net is not appropriate. How-
ever, in cases where the disciplines are incompatible, the node must be split and con-
nect modules inserted to link the now distinct parts of the newly partitioned node
(4§4.3p128). In this case, the discipline must be fully resolved for each of the new
nodes as the resolved discipline is needed when determining the type of connect mod-
ule that is inserted. A continuous time node cannot be split in this manner, and so all
nets of a continuous-time node must be compatible.

The discipline of an undeclared net can be fully resolved with any one of the follow-
ing methods:

1.

2.

One could explicitly declare the discipline of the net locally.

One could explicitly declare the discipline of the net remotely using hierarchical
names (5§9.4p230). For example

electrical regulator.drive

would specify the net drive in the instance regulator should have a discipline of
electrical.

3. One could provide connect rules that direct the simulator on how to resolve disci-
plines when confronted with particular sets of disciplines on a net (4§4.2p123).

The process of resolving compatible disciplines with the help of connect rules (not
available in Verilog-A) is illustrated in Figure 1. The process starts at the leaf level
modules and proceeds up through the hierarchy to the root or the top-level module. In
this example it is assumed that all disciplines are compatible. The first resolution step
occurs in Instance1 where the discipline of net1 must be resolved. This net is assumed
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to be undeclared in Instance1, but it is connected to a port of Instance11, which has a
discipline of discipline11, and to a port of Instance12, which has a discipline of
discipline12. The first connect rule is used to resolve this net to a discipline of
discipline1. This same procedure is used in the top-level module to resolve net0, and
the node itself, to a discipline of discipline0. This process is described more fully for
the case of mixed nets in Chapter 4 in Section 4.2 on page 123.

2.5 Ports, Nets, and Nodes
A node is an electrically infinitesimal point of interconnection. A net is the name used
for a node within a particular module. A port is a net that traverses the boundary of a
module to the next higher level of the hierarchy. In Verilog-A nets and ports are
declared using disciplines. With Verilog-AMS they may also be declared using the
Verilog wire types, described in Table 8, or the new wreal type, which are discrete
domain real-valued nets. Either scalar or vector nets may be declared.

Examples:
voltage p, n;
electrical [12:1] out;
logic [0:15] bus;

Ports are nets that are listed in a port list for the module. Each port must also have its
directionality specified as input, output or inout (bidirectional). In Verilog-A a port
must be explicitly declared net with a discipline. In Verilog-AMS, it may also be a net
with either an explicitly or implicitly declared wire, or a register if the directionality is
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output. Other types of variables, reals and integers in particular, cannot be declared as
ports, regardless of the directionality.

Example:
module amplifier (out, in);

input in;
output out;
electrical out, in;

As of the most recent Verilog-AMS standard it is possible to combine the direction
and type declaration into a single statement [28]. However, this feature is not yet
available in most implementations.

Examples:
input voltage in;
output voltage out;

A vector net (a bus) is declared by providing a range immediately after the discipline
or wire type (for this reason, nets with different sizes must be declared using separate
statements). The range consists of the integer indices for the first and last members of
the array.
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An input port cannot be declared with type reg and inout ports cannot be reg or wreal
or have a signal-flow discipline. The value of an input port cannot be assigned a value
or be the target of a contribution statement within the module. The declaration of the
direction of vector ports is given in a manner similar to the way their discipline is
declared, though the dimension is optional in the direction statement.

Examples:
output [12:1] out;
electrical [12:1] out;

output out;
electrical [12:1] out;

The type of nets and ports need not be declared. Undeclared nets and ports used in the
structural part of a module take on the type of the ports that connect to them
(5§2.4p159). If they are used in the behavioral part of a module, they are assumed to
be scalar wires. As the traditional Verilog wire types are not supported in Verilog-A,
all nets and ports used in a Verilog-A behavioral description must be declared.

src #(.ampl(1)) src1 (n);
load #(.r(50) load1 (n);

In this example, n is an implicitly declared net.

The reference or ground node can be accessed by using the ground statement to give
it a name that can be used within a module.

Example:
ground gnd ;

When declaring nets and ports using the traditional Verilog net types, there are addi-
tional features available. One can add a delay to the net, which effectively adds delay
to any driver of the net. In the following example, a delay of 10 time units (as speci-
fied with `timescale (5§1.4p151)) is added to the vector wire.

Example:
wire [7:0] #10 data;

One can also specify that individual members of a vector wire are inaccessible, that
the members can only be accessed as a group. To do so, add the vectored keyword to
the declaration. Conversely, to explicitly declare that members of a vector wire can be
accessed individually using the bit-select and part-select mechanisms, add the sca-
lared keyword (this is the default behavior).

Example:
wire vectored [7:0] #10 data;
wire scalared [5:0] #10 control;
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Finally, it is possible to declare a logical expression that always acts to drive a net
when declaring the net. This is referred to as net assignment (5§7.4.3p214).

Example:
wire c = a ~& b;

2.6 Branches
A branch is a path between two nets. Each branch is associated with the two nets
from which it derives a discipline. These nets are referred to as the branch terminals.
Only one net need be specified, in which case the second net defaults to ground and
the discipline for the branch is derived from the specified net. The disciplines for the
specified nets must be compatible (5§2.4.1p161).

Branches are explicitly declared and named using

branch (n1, n2) branch1, branch2;

In this case, two branches are created, both of which are connected between nets n1
and n2. If either of the nets is a vector net, then the branch becomes a vector branch. If
both nets are vectors, they must have the same size.

In addition to explicitly named and declared branches, implicitly declared unnamed
branches are also supported. In this case, a pair of nets is used to identify the branch.
(5§3.1p168)

3 Signals
Signals are values that vary with time that are passed between modules. There are two
types of signals, continuous time (often referred to as analog) and discrete event
(often referred to as digital, but also includes continuous-value (analog) discrete-event
signals). Discrete event signals belong to the discrete domain, meaning that they are
associated (owned) by the discrete-event kernel. They are piecewise constant or ‘event
driven’ and may or may not be associated with explicitly declared disciplines. All
continuous-time signals belong to the continuous domain and are associated with
explicitly declared disciplines (5§2.4p159). Continuous-time signals are associated
with the continuous-time kernel and their value can only be accessed through the use
of access functions, which implies that they must have disciplines.
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3.1 Continuous-Time Signal Access

3.1.1 Access Functions

Flow and potential signals on nets, ports, and branches are accessed using access
functions. The name of the access function is taken from the discipline of the net,
port, or branch associated with the signal. The list of predefined access functions was
given earlier in Table 6 on page 159. For the electrical discipline, the access functions
are V and I, with V accessing the voltage (the potential) and I accessing the current
(the flow).

In the following examples, assume that n and m are either nets or ports, b is a branch,
and p is a port, and that all are associated with the electrical discipline.

Examples:
V(n)
l(n)
V(b)
l(b)
V(n,m)
l(n,m)
l(<p>)

// Voltage from n to ground (unnamed branch)
// Current from n to ground (unnamed branch)
// Voltage across b (named branch)
// Current through b (named branch)
// Voltage from n to m (unnamed branch)
// Current from n to m (unnamed branch)
// Current through p (port branch)

In all cases, one can say that the access function is applied to a branch, where the
branch can be an unnamed branch, a named branch, or a port branch.

An access function can only be applied to a scalar branch. Thus, it can be applied to
the member of a bus, but not the bus itself. When applying an access function to a
member of a bus, the index must be a genvar expression (5§2.2p155).

Example:
V(a[2])

To read the value of a signal, apply an access function to a branch to gain access to the
desired signal, and place that access function in an expression. To modify the value of
a signal, the access function must be the target of a contribution operator.

Example:
l(cap) <+ c*ddt(V(cap));

3.1.2 Accessing Signal Attributes

Attributes are attached to the nature of a potential or flow. The attributes for a net or a
branch can be accessed by using the hierarchical referencing operator ( . ) to the
potential or flow for the net or branch. For example, if a is a net, port, or branch, then
a.potential.abstol is the abstol for the potential of a.
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Example:
analog begin

in = max(V(p), V(n));
integ = idt(in, p.potential.abstol);
V(out) <+ abs(integ);

end

3.2 Contributions
Analog signals (potentials and flows) are generally assigned values within contribu-
tion statements (also described in (5§6.4p198) and in Chapter 3 in Section 4 starting
on page 58). Contribution statements always contain a contribution operator, denoted
‘<+’. Before the contribution operator is an access function, defining the target of the
contribution. After the contribution operator is an expression, which evaluates to the
value of the contribution.

Example:
V(out) <+ transition( quantized, td, tt );

If there are multiple contributions to the same branch within the same analog process,
the contributions accumulate.

Example:
l(diode) <+ is*(limexp(V(diode)/$vt) – 1);
l(diode) <+ ddt(–2*cjo*phi*sqrt(1 – V(diode)/phi));

In this example the evaluated value of both expressions is added to the branch.

An important feature of contribution statements is that the value of the target may be
expressed in terms of itself. This is referred to as an implicit or fixed-point formula-
tion.

Example:
l(diode) <+ is*(limexp(V(diode)/$vt – r*l(diode)) –1);

Notice that l(diode) is found on both sides of the contribution operator. The underly-
ing implementation of the simulator will find the value of l(diode) that equals the sum
of the contributions made to it, even if the contributions are a function of l(diode)
itself. This feature is demonstrated in Listing 12 on page 59 of Chapter 3.

3.2.1 Switch Branches

At any point in time one cannot contribute to both the potential and the flow of a
branch. However, it is possible to change the target of the contribution over time from
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potential to flow and back again. In doing so, one is said to be contributing to a switch
branch.

Example:
if (V(ps,ns) > thresh)

V(p,n) <+ 0;
else

l(p,n) <+ 0;

In addition, a switch branch is also created if the potential of the branch is the target of
a contribution statement, but the statement is not evaluated at every point in time. In
this case, when no contribution is made, the branch flow is zero.

Example:
if (V(ps,ns) > thresh)

V(p,n) <+ 0;

This example is equivalent to the previous example.

3.2.2 Indirect Branch Assignments

Contribution statements are not the only way that values can be assigned to analog
signals. Indirect branch assignments provide an alternative approach that is useful in
cases where contributions do not behave as needed. Once such case is the ideal opamp
(or nullor). In this model, the output is driven to the voltage that results in the input
voltage being zero. The constitutive equation is

which can be formulated with a contribution statement as

This statement defines the output of the opamp to be a controlled voltage source by
assigning to V(out) and defines the input to be high impedance by only probing the
input voltage. That the desired behavior is achieved can be seen by subtracting V(out)
from both sides of the contribution operator, resulting in (1). However, this approach
does not result in the right tolerances being applied to the equation if out and in have
different disciplines.

The indirect branch assignment should be used in this situation.

which reads ‘drive V(out) so that V(in) == 0’. This indicates out is driven with a volt-
age source and the source voltage needs to be adjusted so that the given equation is
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satisfied. Any branches referenced in the equation are only probed and not driven. In
particular, V(in) acts as a voltage probe.

The left hand side of the equality operator must either be an access function, or ddt or
idt applied to an access function. The tolerance for the equation is taken from the
argument on the left side of the equality operator.

An application of the indirect branch assignment is shown in Listing 1, a module that
describes an ideal opamp.

3.2.3 Multiple Indirect Assignments

For multiple indirect assignments statements, the targets frequently can be paired with
any equation.

Example:

The following system of ordinary differential equations,

can be written as

V(x): ddt(V(x)) == f(V(x), V(y), V(z));
V(y): ddt(V(y)) == g(V(x), V(y), V(z));
V(z): ddt(V(z)) == h(V(x), V(y), V(z));
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LISTING 1 An ideal opamp.

module ideal_opamp (pout, nout, pin, nin);
output pout, nout;
input pin, nin;
electrical pin, nin, pout, nout;
branch (pout, nout) out;
branch (pin, nin) in;

analog begin
V(out): V(in) == 0;

end
endmodule
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or

V(y): ddt(V(x)) == f(V(x), V(y), V(z));
V(z): ddt(V(y)) == g(V(x), V(y), V(z));
V(x): ddt(V(z)) == h(V(x), V(y), V(z));

or

V(z): ddt(V(x)) == f(V(x), V(y), V(z));
V(x): ddt(V(y)) == g(V(x), V(y), V(z));
V(y): ddt(V(z)) == h(V(x), V(y), V(z));

without affecting the results.

3.2.4 Indirect Assignment and Contribution

Indirect assignment is incompatible with contribution. Once a value is indirectly
assigned to a branch, it cannot be contributed to using the branch contribution opera-
tor. It is illegal to indirectly assign to an external branch or contribute to an external
branch that has an indirect branch assignment.

4 Expressions

An expression is a construct that combines operands with operators to produce a
result that depends on the values of the operands and the semantic meaning of the
operators. Any legal operand without an operator is also considered an expression.
Wherever a value is needed in a Verilog-AMS statement, an expression can be used.

Some statement constructs require an expression to be a constant expression. The
operands of a constant expression consist of literal numbers and parameter names, but
they can use any of the operators defined in Table 9 or the functions in Table 10.

4.1 Operators

The operators available in Verilog-AMS are listed in Table 9.

4.2 Functions

A function takes a collection of arguments and returns a value based on the values of
the arguments. The arguments are passed by order in a comma separated list from the
expression where the function is called. In general, values are not required for all
parameters as some parameters have default values. To indicate that the default value
should be used, simply do not specify the argument value. If the argument value is
expected at the end of the argument list, both the argument and the comma that sepa-
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rates it from the previous value are not specified. Otherwise the comma is given, but
not the value.

4.3 Mathematical Functions
The standard mathematical functions supported by Verilog-A/MS are shown in
Table 10. The arguments must be numeric (integer or real). For min(), max(), and
abs(), if either argument is real, both are converted to real, as is the result. All argu-
ments to the other functions are always converted to real. All arguments to the trigo-
nometric and hyperbolic functions are specified in radians.

The min(), max(), and abs() functions have points where their derivatives are unde-
fined. In order to define the behavior of the derivative of these functions at their points
of discontinuity, these functions are defined as:

min(x,y) is equivalent to (x < y) ? x : y
max(x,y) is equivalent to (x > y) ? x : y
abs(x) is equivalent to (x > 0) ? x : –x

4.4 Logical Functions
A logical function is a function that returns either a 1 or 0 in the form of an integer to
signify true or false, yes or no.

4.4.1 Analysis

The analysis function takes one or more string arguments and returns 1 (true) if any of
the arguments match the current analysis type or name.

analysis(str1, <str2>, ... )

The names given in Table 11 are the names used for traditional Spice-like analyses. In
addition, individual simulators may define their own names. Any unsupported names
are simply assumed not to match.

4.5 Environment Functions
The environment functions return information about the current circuit environment
in the form of a real number.

4.5.1 Current Time ($abstime)

The $abstime (short for absolute time) function takes no arguments and returns a real
value that equals the current time in seconds.
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4.5.2 Current Time ($realtime)
The $realtime function returns a real value equal to the current time in time units (as
specified with `timescale (5§1.4p151)).
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4.5.3 Ambient Temperature ($temperature)
The $temperature function takes no arguments and returns the current ambient tem-
perature in Kelvin.

4.5.4 Thermal Voltage ($vt)

The $vt function returns the thermal voltage,

where k is Boltzmann’s constant (`P_K), T is the temperature in Kelvin as specified as
the argument to the function, and q is the charge of an electron, (`P_Q). If no argu-
ment is specified, the temperature is taken to be the current temperature as returned by
$temperature.

4.6 Analog Operators

Analog operators operate on an expression that varies with time and return a value.
They are functions that operate on more than just the current value of their arguments
and so maintain internal state, with their output being dependent on both the input and
the internal state. Analog operators are also sometimes referred to as filters.
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Analog operators are subject to several important restrictions because they maintain
their internal state.

Analog operators must not be used inside conditional (if, case) or looping (for)
statements unless the conditional expression controlling the statement consists of
terms that cannot change their value during the course of an analysis, that is,
unless genvar expressions are used to control the statement (3§10p84).

Analog operators are not allowed in the repeat and while looping statements.

Analog operators are not allowed in the body of an event statement (3§9p80).

Analog operators can only be used inside an analog process; they cannot be used
inside an initial or always process, or inside user-defined functions.

It is illegal to specify a null operand argument to an analog operator.

These restrictions prevent usage that could cause the internal state to become cor-
rupted or out-of-date. Table 12 lists the notable restrictions on the various analog
operators and functions.
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4.6.1 Time Derivative (ddt)
ddt(operand, <abstol\nature>)

Returns the derivative of operand with respect to time. Takes an optional argument
from which the absolute tolerance is determined. That argument is either the tolerance
itself, or it is a nature from which the tolerance is extracted.

The output of a ddt operator during a quiescent operating point analysis is 0. During a
small signal frequency domain analysis, such as AC or noise, the transfer function of
the ddt operator is where and f is the frequency of the analysis.

4.6.2 Time Integral (idt)
idt(operand, <ic>, <assert>, <abstol|nature>)

Returns the integral of operand with respect to time. Takes an initial condition, ic, that
is asserted at the beginning of the simulation, and whenever assert is nonzero. Takes
an optional argument from which the absolute tolerance is determined. That argument
is either the tolerance itself, or it is a nature from which the tolerance is extracted
(3§13p94).

During a DC operating point analysis the apparent gain from its input, operand, to its
output is infinite unless an initial condition is supplied and asserted. If no initial con-
dition is supplied, the idt function must be part of a negative feedback loop that drives
its input value to zero, otherwise the simulator will fail to converge. During a small
signal frequency domain analysis, such as AC or noise, the transfer function of the idt
function is where and f is the frequency of the analysis.

4.6.3 Circular Time Integral (idtmod)
idtmod(operand, <ic>, <modulus>, <offset>, <abstol|nature>)

Returns the integral of operand with respect to time. Takes an optional initial condi-
tion, ic, that if given is asserted at the beginning of the simulation. If the modulus is
given, the output wraps so that it always falls between offset and offset+modulus as
shown in Figure 2. The default value for offset is 0. Takes an optional argument from
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which the absolute tolerance is determined. That argument is either the tolerance
itself, or it is a nature from which the tolerance is extracted (3§13p94).

In DC analysis the idtmod function behaves the same as the idt function (except the
idt output is passed through the modulus function). As such, the same warnings apply.
The small signal frequency domain analysis behavior is the same as the idt function;
the transfer function is        .

4.6.4 Transition
transition(operand, <delay>, <trise>, <tfall>, <ttol>)

Converts a piecewise constant waveform,
operand, into a waveform that has con-
trolled transitions. The transitions have the
specified delay and transition time (trise
and tfall). If only trise is given, then tfall is
taken to be the same as trise. If not speci-
fied, the transition times are taken to be the
value of the currently active `default_transition compiler directive. The transition time
is sometimes referred to as the inertial delay, in which case delay is referred to as the
transport delay.

Normally the transition filter causes the simulator to place time points on each of the
corners of the transition. However, if the transition time is specified to be zero, the
transition occurs in the default transition time and no attempt is made to resolve the
trailing corner of the transition. The time tolerance ttol, when nonzero, allows the

180



4 Expressions

times of the transition corners to be adjusted for better efficiency within the given tol-
erance.

Since transitions take some time to complete, it is possible for a
new output transition to be due to start before the previous transi-
tion is complete. In this case, the transition function terminates the
previous transition and shifts to the new one in such a way that the
continuity of the output waveform is maintained. Thus, the transi-
tion function naturally produces glitches or runt pulses. In addition, the transition fil-
ter internally maintains a queue of output transitions that have been scheduled but not
processed. Each has an associated delay and transition time, which are the values of
the associated arguments when the change in the value of the operand occurred. Since
the delay can be different for each transition, it may be that the output from a change
in the input may occur before the output from an earlier change. In this case, the tran-
sition that results from the change of the input that occurs later will preempt outputs
from those that occurred earlier if their output occurs earlier.

During a DC operating point analysis the output of the transition function equals the
value of operand. During a small signal analysis no signal passes through the transi-
tion function.

4.6.5 Slew
slew(operand, <maxPosSlope>, <maxNegSlope>)

Given an input waveform, operand, slew pro-
duces an output waveform that is the same as
the input waveform except that it has bounded
slope. The maximum positive slope and maxi-
mum negative slope are specified as arguments, maxPosSlope and maxNegSlope. If
maxNegSlope is not specified, it is taken to be the same as maxPosSlope.

During a DC operating point analysis the output of the slew function will equal the
value of operand. During a small signal analysis, such as AC or noise, the slew func-
tion will exhibit zero gain if slewing at the operating point and unity gain otherwise.

4.6.6 Delay
absdelay(operand, delay, <maxDelay>)

Returns a waveform that equals the input wave-
form, operand, delayed in time by an amount
equal to delay, the value of which must be posi-
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tive (the operator is causal). If maxDelay is specified, then delay is allowed to vary but
must never be larger than maxDelay.

During a DC operating point analysis the output of the absdelay function will equal
the value of operand. During a small signal frequency domain analysis, such as AC or
noise, the transfer function of the absdelay function is where T is the value of
the delay argument and f is the frequency of the analysis.

4.6.7 Laplace Transform Filters

The Laplace transform filters implement lumped linear continuous-time filters. Each
filter takes a common set of parameters, the first is the input to the filter. The next two
specify the filter characteristics. They are static, meaning they must not change during
the course of the simulation. Finally, an optional parameter specifies the absolute tol-
erance. It may be a real number that directly gives the tolerance or a nature from
which the tolerance is derived. Whether an absolute tolerance is needed depends on
the context where the filter is used (3§13p94).

The Laplace transforms are written in terms of the variable s. The behavior of the fil-
ter in the time domain can be found by convolving the inverse of the Laplace trans-
form with the input waveform. In frequency domain analyses, the transfer function is
found by substituting where . For quiescent operating point analy-
ses, such as a DC analysis, the transfer characteristics are found by setting s = 0
[25,30].

Laplace Transform Filter Functions. The filter laplace_zp() implements the
zero-pole form of the Laplace transform filter. The general form is

laplace_zp(operand,

where (zeta) is a vector of M pairs of real numbers. Each pair represents a zero, the
first number in the pair is the real part of the zero frequency (in radians per second)
and the second is the imaginary part. The zeros argument is optional. Similarly,
(rho) is the vector of N real pairs, one for each pole. The poles are given in the same
manner as the zeros. The transfer function is

where and are the real and imaginary parts of the zero, while and
are the real and imaginary parts of the pole. If a root (a pole or zero) is real, the
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imaginary part is specified as zero. If a root is complex, its conjugate must also be
present. If a root is zero, then the term associated with it is implemented as s, rather
than (1 – s/r) (where r is the root). If then the pole is stable.

Example:
V(out) <+ laplace_zp(V(in), {–2, 0}, {–1, –3, –1,3});

implements

laplace_nd implements the rational polynomial form of the Laplace transform filter.
The general form is,

laplace_nd(operand, n, d,

where n is a vector of M real numbers containing the coefficients of the numerator and
d is a vector of N real numbers containing the coefficients of the denominator. The
transfer function is

Example:
V(out) <+ laplace_nd(V(in), {0, 3}, {4, 0, 1});

implements

The filters laplace_zd and laplace_np are similar to the Laplace filters already
described with laplace_zd accepting a zero/denominator polynomial form and
laplace_np taking a numerator polynomial/pole form.

laplace_zd(operand,       d,
laplace_np(operand, n,
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The z transform filters implement lumped linear discrete-time filters. Since they exist
within analog processes, their inputs and outputs are continuous-time waveforms. As
shown in Figure 3, each filter function internally samples its input waveform x(t) to
form a sequence it filters that sequence to produce an output sequence and then
it passes that sequence through a zero-order hold to produce y(t). The input sampler is
controlled by two parameters common to each of the filters, T and T is the sam-
pling interval or time between samples and is the time of the first sample. The out-
put zero-order hold is also controlled by two common parameters, T and T is the
total hold time for a sample and is the transition time, or the time the output takes to
transition from one value to the next. During the transition, the output engages in a
linear ramp between the old and new values so as to eliminate the discontinuous jump
that would otherwise occur.

In addition to these three parameters, each z-domain filter takes three more argu-
ments. The first is the input signal, y(t). The other two are vectors that describe the z-
domain transfer function of the discrete-time filter. As with the Laplace filters, the
transfer function can be described using either the coefficients or the roots of the
numerator and denominator polynomials. The filter characteristics are static, meaning
that any changes that occur during the course of the simulation in the values contained
within these vectors are ignored; only their initial values are important.

The z transforms are written in terms of the variable z. The behavior of the internal
discrete-time filter in the time domain can be found by convolving the inverse of the z
transform with the input sequence, The composite behavior then includes the
effect of the sampler and the zero-order hold. In frequency domain analyses, the trans-
fer function of the digital filter is found by substituting where and

The composite frequency response would also include modifications to
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account for the effect of the sampler and zero-order hold. For quiescent operating
point analyses, such as a DC analysis, the composite transfer characteristics are found
by evaluating H(z) for z = 1 [25,30].

Z Transform Filter Functions. The filter zi_zp() implements the zero-pole form of
the z transform filter (zi is short for z inverse). The general form is

zi_zp(operand, T,

where (zeta) is a vector of M pairs of real numbers. Each pair represents a zero, the
first number in the pair is the real part of the zero frequency (in radians per second)
and the second is the imaginary part. The zeros argument is optional. Similarly,
(rho) is the vector of N real pairs, one for each pole. The poles are given in the same
manner as the zeros. The transfer function is

where and are the real and imaginary parts of the zero, while and
are the real and imaginary parts of the pole. If a root (a pole or zero) is real, the
imaginary part is specified as zero. If a root is complex, its conjugate must also be
present. If a root is zero, then the term associated with it is implemented as rather
than (where r is the root). If then the pole is stable.

Example:
V(out) <+ zi_zp(V(in), {0, 0}, {–1, 0});

implements

zi_nd implements the rational polynomial form of the z transform filter. The general
form is,

zi_nd(operand, n, d, T,

where n is a vector of M real numbers containing the coefficients of the numerator and
d is a vector of N real numbers containing the coefficients of the denominator. The
transfer function is
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Example:
V(out) <+ zi_nd(V(in), {1}, {1}, 50u, 10u, 200u);

This example implements a simple sample and hold. When driven with a 1 kHz 1V
sine wave it produces the output shown in Figure 4.

Example:
V(out) <+ zi_nd(V(in), {1}, {0, –1});

implements

which is a discrete-time integrator.

The filters zi_zd and zi_np are similar to the z transform filters already described with
zi_zd accepting a zero/denominator polynomial form and zi_np taking a numerator
polynomial/pole form.

zi_zd(operand,
zi_np(operand,
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Difference Equations and Z-Domain Filters. The z filters are used to imple-
ment the equivalent of discrete-time filters on continuous-time signals. Discrete-time
filters are characterized as being either finite-impulse response (FIR) or infinite-
impulse response (IIR). These filters are often defined in terms of difference equa-
tions. For example,

is a difference equation that describes an FIR filter if for all k and an IIR filter
otherwise. A block diagram that implements this filter is shown in Figure 5. In this
diagram, the blocks marked        represent unit delay cells; they delay the signal that
passes through them by one sample interval. The transfer function of this block dia-
gram is given by

which can be implemented with a zi_nd filter if for all k, and
for k > 1.
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The limexp function is an operator whose internal state contains information about the
argument on previous iterations†. It returns a real value that is the exponential of its
single real argument, however, it internally limits the change of its output from itera-
tion to iteration in order to reduce the risk of overflow and improve convergence. On
any iteration where the change in the output of the limexp function is bounded, the
simulator is prevented from terminating the iteration process. Thus, the simulator can
only converge when the output of limexp equals the exponential of the input. The gen-
eral form is

† Unlike the analog operators, the limexp function does not retain information about previous
time points. Rather, it retains information about the previous iterations at the current time
point.
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limexp( x )

4.7  Thresholding Functions

4.7.1  Cross and Above

4.7.2  Last Crossing

4.8  Limiting Functions

4.8.1  Limited Exponential

These functions detect and return information about threshold crossings. They are
subject to the same restrictions as analog operators (Section 4.6).

The cross and above functions produce events when they detect a threshold crossing.
They are described in Section 6.8 on page 204.

The last_crossing function returns a real value representing the time in seconds when
its operand last crossed zero in a specified direction. The general form is

last_crossing( operand, direction );

If direction is +1 the function will observe only rising transitions through zero; if –1,
falling transitions are observed; if 0, both rising and falling transitions are observed,
and if any other value, no transitions are observed.

The last_crossing function does not control the time step to get accurate results; it
uses interpolation to estimate the time of the last crossing. However, it can be used
with the cross function for improved accuracy. See Listing 25 on page 82 for an
example of this.
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White noise processes are stochastic processes whose current value is completely
uncorrelated with any previous or future values. This implies their spectral density
does not depend on frequency. They are modeled using

white_noise( pwr, <name> )

which generates white noise with a power of pwr. The white_noise function can be
used to model the thermal noise produced by a resistor as follows,

V(res) <+ r*l(res) + white_noise(4*`P_K*$temperature*r, “thermal”);

The flicker_noise function models flicker noise. The general form is

flicker_noise( pwr, <exp>, <name> )
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and the return value is The apparent behavior of limexp is not distinguishable from
exp, except using limexp to model semiconductor junctions generally results in dra-
matically improved convergence, though at the cost of extra memory being required.

4.9  Small-Signal Stimulus Functions

4.9.1  AC Stimulus (ac_stim)

4.9.2  Noise Stimulus (white_noise, flicker_noise, noise_table)

A small-signal analysis computes the steady-state response of a system that has been
linearized about its operating point and is driven by one or more small sinusoids. The
process of linearization eliminates the possibility of driving the circuit with conven-
tional behavioral statements. The small-signal stimulus functions are provided to
address this need; they operate after the linearization. They are demonstrated in
Listing 16 on page 65 in Chapter 3.

SPICE-class simulators provide AC analysis, which is a small-signal analysis used for
computing transfer functions. Verilog-A/MS provides the ac_stim function as a way
of providing the stimulus for an AC analysis.

ac_stim( <analysisName>, <mag>, <phase> )

The AC stimulus function returns zero during large-signal analyses (such as DC and
transient) as well as on all small-signal analyses using names that do not match anal-
ysisName. The name of a small-signal analysis is implementation dependent,
although the expected name (of the equivalent of a SPICE AC analysis) is ‘ac’, which
is the default value of analysisName. When the name of the small-signal analysis
matches analysisName, the source becomes active and models a source with magni-
tude mag and phase phase. The default magnitude is one and the default phase is zero
and is given in radians.
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It produces noise with a power of pwr at 1 Hz and varies in proportion to where
is given by the exp parameter. The default value for exp is 1, which corresponds to
pink noise (noise whose power is proportional to 1/f ).

The noise_table function produces noise whose spectral density varies as a piecewise
linear function of frequency. The general form is

noise_table( vector, <name> )

where vector contains pairs of real numbers: the first number in each pair is the fre-
quency in Hertz and the second is the power. Noise pairs are specified in the order of
ascending frequencies. The noise_table function performs piecewise linear interpola-
tion to compute the power spectral density generated by the function at each fre-
quency.

Each of the noise stimulus functions support an optional name argument, which acts
as a label for the noise source. It is used when the simulator outputs a report that
details the individual contribution made by each noise source to the total output noise.
The contributions of noise sources with the same name from the same instance of a
module are combined in the noise contribution summary.

Verilog-A/MS provides the ability to define functions within a module. There are two
types of user-defined functions, analog and digital. Analog functions are called from
within an analog process and are described in Section 6.7 on page 204. Digital func-
tions can be called from digital processes and tasks, or from continuous assignments.
They are described in Section 7.9.1 on page 221.

The $bound_step function places a bound on the size of the next time step used by the
continuous time kernel. It does not specify what the time step is, but rather how large
it can be.

$bound_step( maxStep )

This section describes the various functions that provide an interface to the internal
algorithms of the simulator or to the operating system.
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4.10  User-Defined Functions

5  System Functions and Tasks

5.1  Simulator Interface

5.1.1 Bound Step ($bound_step)
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The $discontinuity function is used to notify the continuous-time kernel of discontin-
uous changes in the behavior of an analog component. This information helps the ker-
nel maintain accurate results in exceptional situations.

$discontinuity( order )

The argument is a non-negative integer that indicates the lowest order derivative that
is discontinuous. An argument of i implies a discontinuity in the derivative of the
constitutive equation with respect to either a signal value or time. Hence, $discontinu-
ity(0) indicates a discontinuity in the model, $discontinuity(1) indicates a discontinu-
ity in the model’s derivatives, etc.

Discontinuous behavior can cause convergence problems for the simulator and should
be avoided whenever possible. To this end, the filter functions (transition, slew, etc.)
can be used to smooth behavior that is discontinuous with respect to time.

Discontinuities created by switch branches and built-in functions, such as transition,
need not be announced.
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The maximum allowed time step is specified as the argument. There is no return
value.

5.1.2  Discontinuity ($discontinuity)

5.1.3  Finish ($finish)

The $finish function terminates the simulation session. It takes an integer argument
that indicates the message that should be printed. If 0, nothing is printed, if 1, the time
and location are printed (the default behavior), and if 2, time and location are printed
along with memory and CPU statistics.

$finish<(n)>

5.7.4  Stop ($stop)

The $stop function is similar to $finish, except that it causes the simulation to be sus-
pended rather than terminated. The difference being that the user may resume simula-
tion after it has been suspended, but cannot do so after it has been terminated.

$stop<(n)>

5.2  Display Tasks

The display tasks are used to produce textual output that is either sent to the display or
to a file. They are all very similar in use, and so the strobe function is described in
detail, and then it is contrasted against the other tasks.
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The $strobe task takes a list of arguments and converts them into text that is written to
the standard output. The first argument must be a siring, and that string may include
special character patterns that incorporate subsequent arguments. Those characters
are given in Table 4 on page 156 and Table 13. Once the arguments associated with
the first string are exhausted, if there are any arguments remaining, the first must be a
string, in which case the process repeats. Once the arguments have been printed, a
newline is added. If there are no arguments, only the newline is printed.

Example:
$strobe(“Average period = %g measured from %d periods.”, period, total);

The format codes of Table 13 that act on real valued arguments support C language
style format specifications. Optional integers can be inserted into the format code to
specify the field width, the precision, or both. For example, the format specification
‘%10.3g’ indicates the number should be formatted with a minimum field width of 10
and with 3 digits in the mantissa.
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5.2.2  Display ($display)

The $display task is identical to the $strobe task.

5.2.1  Strobe ($strobe)
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5.2.3  Write ($write)

5.2.4 Monitor ($monitor)

5.3  File Operation Tasks

5.3.1  File Open ($fopen)

5.3.2  File Close ($fclose)

5.3.3  Display to File ($fdisplay)

The $write task is identical to the $strobe task, except newlines are not added unless
explicitly specified in the format strings.

The $monitor task is identical to $strobe, except output is only produced when the
value of the arguments change.

Verilog maintains a table of open files that may contain at most 32 files. Each file cor-
responds to one bit in a 32 bit integer that is referred to as a multichannel descriptor.
The first bit, or channel 0, corresponds to the standard output. The first call to fopen
opens channel 1, which corresponds to the second bit, etc. This non-traditional
approach to files allows output to multiple files with a single statement.

The $fopen task takes a string argument that is interpreted as a file name and opens
the corresponding file for writing. It returns an integer that contains the multichannel
descriptor for the file. A 0 is returned if the file could not be opened for writing.

$fopen( filename )

The $fclose task takes an integer argument that is interpreted as a multichannel
descriptor for a file or files. It closes those files and makes the channels that were
associated with the files available for reuse.

$fclose( multichannelDescriptor )

The $fdisplay task is identical to the $display task, except that it writes to one or more
files rather than to the standard output. The files are specified in the form of a multi-
channel descriptor that is given as the first argument.

$fdisplay( multichannelDescriptor, formatString, <...>)
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5.3.4 Strobe to File ($fstrobe)

5.4  Random Numbers

5.4.1  Uniformly Distributed Integers ($random)

5.4.2  Uniformly Distributed Real Numbers ($rdist_uniform)

5.4.3  Normally Distributed Real Numbers ($rdist_normal)

5.4.4  Exponentially Distributed Real Numbers ($rdist_exponential)

The $fstrobe task is identical to the $strobe task, except that it writes to one or more
files rather than to the standard output. The files are specified in the form of a multi-
channel descriptor that is given as the first argument.

$fstrobe( multichannelDescriptor, formatString, <...>)

These functions return a number chosen at random from a random process with a
specified distribution. When called repeatedly, they return a sequence of random
numbers. Each takes an inout argument, named seed, that specifies the sequence. A
different initial seed results in a different sequence. The seed must be a simple integer
variable that is initialized to the desired initial value. This variable is updated by the
function on each call.

The $random function returns a randomly chosen 32 bit integer. Each time it is called
it returns a different value with the values being distributed uniformly over the range
of 32 bit integers.

$random<( seed )>

The $rdist_uniform function returns a randomly chosen real number that falls in a
specified interval. The interval is specified by two real valued arguments that give the
lower and upper bound of the interval.

$rdist_uniform( seed, lowerBound, upperBound )

The $rdist_normal function returns a randomly chosen real number from a population
that has a normal (Gaussian) distribution. The distribution is parameterized by its
mean and its standard deviation.

$rdist_normal( seed, mean, standardDeviation )

The $rdist_exponential function returns a randomly chosen real number from a popu-
lation that has an exponential distribution. The distribution is parameterized by its
mean.
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$rdist_exponential( seed, mean )

5.4.5  Poisson Distributed Real Numbers ($rdist_poisson)

5.4.6  Chi-Squared Distributed Real Numbers ($rdist_chi_square)

5.4.7  Student T Distributed Real Numbers ($rdist_t)

5.4.8  Erlang Distributed Real Numbers ($rdist_erlang)

6 Analog Behavior

The $rdist_poisson function returns a randomly chosen real number from a popula-
tion that has a Poisson distribution. The distribution is parameterized by its mean.

$rdist_poisson( seed, mean)

The $rdist_chi_square function returns a randomly chosen real number from a popu-
lation that has a Chi Square distribution. The distribution is parameterized by the
degrees of freedom (must be greater than zero).

$rdist_chi_square( seed, degreeOfFreedom )

The $rdist_t function returns a randomly chosen real number from a population that
has a Student T distribution. The distribution is parameterized by the degrees of free-
dom (must be greater than zero).

$rdist_t( seed, degreeOfFreedom )

The $rdist_erlang function returns a randomly chosen real number from a population
that has an Erlang distribution. The Erlang distribution describes the time spent wait-
ing for k Poisson distributed events. The distribution is parameterized by its mean and
by k (must be greater than zero).

$rdist_erlang( seed, k, mean )

This section describes the facilities that are available in Verilog-A/MS for describing
analog behavior. As such, the description for this behavior would be found in an ana-
log process. Everything in this section is presented with the assumption that what is
being described is found within an analog process. Behavioral description found out-
side analog processes is described in Section 7 starting on page 208.
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The basic building block of a behavioral model is the process. A process is an inde-
pendent thread of control. A system generally consists of many processes, all of
which operate concurrently and interact. Processes represent an essential difference
between hardware description languages and general-purpose programming lan-
guages such as C or C++. A process might be very simple, involving only one action
or behavior, perhaps applied repeatedly or continuously, or it might involve a complex
algorithm. The art of modeling hardware is to conceive of the behavior of systems as
a set of these independent but communicating processes.

Discrete time behavioral definitions are encapsulated within the initial and always
processes (5§7.1p209). For continuous time simulation, the behavioral description is
encapsulated within an analog process. Analog processes are introduced using the
analog keyword.

analog statement;

Only one analog process is allowed in a module definition.

Example:
analog

V(out) <+ r*l(out);

An analog process is evaluated ‘at all time’ by the continuous-time kernel. Practically
this means that every analog process is executed at every time point, and while it exe-
cutes, time is frozen at a particular instant of time as chosen by the simulator.

Analog processes do not support the concept of pausing or blocking as described in
Section 7.6 on page 216. As such, delay (using ‘#’) and wait statements are not
allowed. In addition, as described in Section 6.8, the meaning of event statements
(using ‘@’) has been modified within analog processes to eliminate blocking.
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6.1  Analog Processes

6.2  Procedural Blocks
Notice that the analog process consists of a single statement, which is only sufficient
for simple behavior. For more complex behavior, a procedural block should be used.
A procedural block is defined as a sequence of statements surrounded by a begin-end
pair. As such, a procedural block is also sometimes referred to as a sequential block.
When the block is executed, the statements are executed in order. Anywhere a single
statement is allowed, a procedural block can be used instead.
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begin
statement;
statement;

end

Examples:
analog begin

l(res) <+ is*(limexp(V(res)/$vt) – 1);
qd = tf*l(res) – 2*cjo*phi*sqrt(1 – V(cap)/phi);
l(cap) <+ ddt(qd);

end

analog begin
@(above(V(n) – threshold)) begin

if (!given) begin
$strobe(message);
given = 1;

end
end

end
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In the first example, a procedural block was used to allow an analog process to be
described with more than one statement. Within the block, the statements are exe-
cuted in order. In the second example, three nested procedural blocks are used, show-
ing that this idea of replacing a single statement with a sequence of statements is
useful in many places.

6.2.1  Named Blocks
One can name a procedural block by adding a colon and a name after the begin key-
word. Doing so makes it possible to declare local variables within the block, as dem-
onstrated in the example below. Notice that in this code fragment, which is a
modification of the one above, the variable given is declared within the named block
fault, which is associated with the @ statement.

Example:
analog begin

@(above(V(n) – threshold)) begin : fault
integer given;
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While branch contributions and indirect branch assignments are used for modifying
signals, procedural assignments are used for modifying integer and real variables.
Assignment statements consist of a variable (the target) followed by an assignment
operator (=) followed by an expression. The value of the variable is replaced by the
value of the expression. When the statement is executed, the expression is evaluated
and the target updated before proceeding to the next statement.

Example:
qd = tf*l(res) – 2*cjo*phi*sqrt(1 – V(cap)/phi);

Any variable or register that is assigned a value from within an analog process is cap-
tured by that process, meaning that it is not possible to assign it a value outside that
process. Conversely, if a variable is assigned a value outside an analog process, say in
a initial or always process, it is not possible to also assign it a value from within an
analog process.
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if (!given) begin
$strobe(message);
given = 1;

end
end

end

To understand this code, one must remember that all variables declared within mod-
ules, even those declared in named blocks, retain their values for the entire duration of
the simulation. Thus, even when the flow of execution leaves the context where the
variable given is declared, its value is retained and available when the flow of execu-
tion returns.

6.3  Assignments

6.4  Contributions
Contribution statements (also described in Section 3.2 on page 169 and in Chapter 3
in Section 4 starting on page 58) are used to modify the signals on branches. Contri-
bution statements consist of a signal (an access function applied to a branch) followed
by a contribution operator (<+) followed by an expression. The first contribution to a
particular signal within a module sets the value of the signal. Subsequent contribu-
tions add to that value.
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In this example, which is paraphrased from Listing 16 on page 65, the first contribu-
tion statement contributes a constant value giving the branch the attributes of a large-
signal DC source. The second contributes a value that varies in proportion to the cur-
rent through the branch, giving the branch the attributes of a resistor. Since this contri-
bution adds to the first, the branch behaves as a resistive DC source. The third
contribution layers on the attributes of an small-signal AC source, and the fourth sup-
plies the attributes of a noise source. Together they describe a noisy resistive branch
that acts as a source in both large- and small-signal analyses. An important thing to
notice about this example is that the contribution statements can be given in any order.
This is a direct consequence of the commutative property of addition.

Contribution statements provide the ability to simultaneously determine the values of
multiple mutually dependent unknowns. For example, with a resistor

l(p,n) <+ V(p,n)/r;

the contribution statement provides a relationship between the branch current and the
branch voltage that, along with other such relationships that may be found both within
the same module and in other modules, will be solved to determine the values that
simultaneously satisfy all of the relationships. This ability to solve simultaneous
equations distinguishes the contribution statement from simple procedural assign-
ment. And because contribution statements can only exist within analog processes, it
generally determines when an analog process is needed and, conversely, when one
can instead use the generally faster event driven processes (initial or always).

Consider three examples. First a conservative model, such as a resistor, embedded in a
arbitrary circuit. Here, the voltage impressed on the resistor by the circuit will be a
function of the current being supplied to the resistor. Thus, we cannot know the cur-
rent through the resistor without knowing its voltage, but we also cannot know its
voltage without knowing its current. These two quantities must be determined by
solving for all of the unknowns simultaneously, meaning that the resistor model (as
well as other models in the circuit) must contain an analog process that further con-
tains one or more contribution statements.

Now consider a signal-flow model such as a voltage amplifier with an arbitrary exter-
nal signal-flow feedback network. Again, one cannot know the output of the amplifier
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Example:
analog begin

V(p,n) <+ 2*dc;
V(p,n)<+r*l(p,n);
V(p,n) <+ 2*ac_stim(, mag);
V(p,n) <+ white_noise(4*`P_K*$temperature*r, “thermal”);

end
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without knowing the input voltage, but the input voltage is possibly a function of the
current value of the output voltage as processed by the feedback network. So the
amplifier (and the modules within the feedback network) must contain an analog pro-
cess that further contains one or more contribution statements. This is true even if the
signals being processed by the amplifier are discrete-event by nature (piecewise con-
stant).

Finally, consider a signal-flow model such as the amplifier of the last example, and
assume both that it is processing discrete-event signals and that any feedback that is
present includes sufficient delay so that the values fed back are previously known
(they are from a previously computed solution point). In this case, one can always
directly compute the output from the known quantities at the input, and so contribu-
tion statements are not required. Furthermore, the signals being processed are dis-
crete-event signals and so an analog process is not needed. In this case, one can
successfully use an event-driven process such as an always process.

200

6.5  Conditionals

6.5.1  Conditional Operator

6.5.2  If-Else Statement

The ?: operator is provided as a way of performing conditional operations within an
expression. It takes three arguments in the following form

cond ? val1 : val2

where cond, val1, val2, and the combination, are all expressions. The operator returns
val1 if cond is nonzero, otherwise it returns val2.

Example:
state = (V(d) > 0) ? 1 : –1;

In this example, state becomes 1 if V(d) is greater than 0 and –1 otherwise.

The if-else statement conditionally evaluates statements based on the value of a logi-
cal expression. If the expression evaluates to true (that is, has a non-zero value) the if
clause is executed and if the else clause exists, it is not evaluated. If it evaluates to
false (has a zero value) or if the result is ambiguous (has a value of x or z), the if
clause is not executed and if the else clause exists it is evaluated.

if (logical expression)
if clause;

[else
else clause;]
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The case item expressions are evaluated and compared in the exact order that they are
given. During this linear search, if one of the case item expressions matches the case
expression given in parentheses, then the statement associated with that case item is
executed. If all comparisons fail, and the default item is given, then the default item
statement is executed; otherwise none of the case item statements are executed.

The case expression and the case item expressions are evaluated at runtime; neither is
required to be a constant expression.

Case statements may not contain analog operators unless the case expression and the
case item expressions are all genvar expressions.

There are also casex and the casez versions of the case statement. They operate on bit
vectors: casex ignores bit positions that contain x or z, and casez ignores bit positions
that contain z. They both use ‘?’ as don’t cares in bit patterns.
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Examples:
if (V(ps,ns) > thresh)

V(p,n) <+ 0;
else

l(p,n) <+ 0;

and
if (V(ps,ns) > thresh)

V(p,n) <+ 0;

If-else statements may not contain analog operators unless the logical condition is a
genvar expression.

6.5.3  Case Statements

The case statement is a multi-way decision statement that tests if an expression
matches one of a number of other expressions, and if so, branches accordingly.

Example:
case (select)

0: out = V(in0);
1: out = V(in1);
2: out = V(in2);
3: out = V(in3);
default: out = 0;

endcase
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Operation of the for statement is controlled by the three statements that are contained
within the parentheses that follow the for keyword. The first statement is evaluated
once before the loop is entered; it is used as an initializer. The second is a logical
expression that is evaluated before each iteration; if the value is true the iteration pro-
ceeds, if it is false the loop terminates without executing the iteration. The third is
evaluated at the end of each iteration; it is generally used to update the index variable.
Executing the iteration involves executing the statement that follows the for state-
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6.6  Iterators

6.6.1  Repeat and While Loops

6.6.2 For Loops

There are several types of looping statements: repeat, while, and for. These statements
provide a means of evaluating a statement a specified number of times.

A repeat loop executes a statement a fixed number of times. Evaluation of the expres-
sion determines how many times a statement is executed.

Example:
repeat (size) begin

memory[i] = 0;
i = i + 1;

end

A while loop executes a statement until an expression becomes false. If the expression
starts out false, the statement is not executed at all.

while (temp) begin
if (temp[0])

counter = counter + 1;
temp = temp >> 1;

end

Analog operators and contribution statements are not allowed in the repeat and while
iterators.

The for statement is a flexible looping construct taken from the C programming lan-
guage.

for (i = bits – 1; i >= 0; i = i –1) begin
if (V(in[i]) > thresh)

aout = aout + fullscale/weight;
weight = weight*2;

end
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The generate statement is an obsolete looping construct that was intended to allow
support for looping with restricted constructs such as analog operators. The for loop
that uses a genvar index is intended to replace the generate statement. A generate loop
has the form

generate index (start, end, <increment>)
body

The generate statement takes an integer index, a pair of bounds, and an optional incre-
ment. The start and end bounds and the increment are constant expressions. They are
only evaluated at elaboration time. If the expressions used for the increment and
bounds change during the simulation, it does not affect the behavior of the generate
statement. In effect, the generate loop is unrolled in advance.

Example:
generate i (bits–1, 0, 1) begin

V(out[i]) <+ transition(result[i], td, tt);
end

In this example, if bits is assumed to be 4, the loop is equivalent to

V(out[3]) <+ transition(result[3], td, tt);
V(out[2]) <+ transition(result[2], td, tt);
V(out[1]) <+ transition(result[1], td, tt);
V(out[0]) <+ transition(result[0], td, tt);

The index must not be assigned or modified in any way within the loop.

If the lower bound is less than the upper bound and the increment is negative, or if the
lower bound is greater than the upper bound and the increment is positive, then the
generate statement does not execute. If the lower bound equals the upper bound, the
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ment, in this case a composite statement that is contained between the begin and the
end keywords. The above for loop is equivalent to the following while loop.

i = bits – 1;
while (i >= 0) begin

if (V(in[i]) > thresh)
aout = aout + fullscale/weight;

weight = weight*2;
i = i – 1;

end

For statements may not contain analog operators or contribution statements unless the
index variable is a genvar.

6.6.3  Generate Loops (Deprecated)
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A function is code that is encapsulated and parameterized so that it can be shared
throughout a module. An analog function definition begins with the keywords analog
function, optionally followed by the type of the return value of the function, then the
name of the function and a semicolon. One or more input parameters may be declared
along with any number of variables. The body of the function consists of a single
statement that follows the declarations, and the function ends with the keyword end-
function. The return type may be real or an integer, with the default being real. The
return value is set by assigning a value to a variable whose name is the same as the
name of the function.

An analog function:
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increment is ignored and the statement executes once. If the increment is not given, it
is taken to be +1 if the lower bound is less than the upper bound, and –1 if the lower
bound is greater than the upper bound.

6.7  User-Defined Analog Functions

6.8  Analog Events

may contain any statements available for conditional execution;

must not contain access functions, contribution statements, or event statements;

must have at least one input declared;

must not contain named blocks; and

may only reference locally-defined variables or variables passed as arguments.

Example:
analog function real sinc;

input arg;
real arg;

begin
if (arg != 0)

sinc = sin(arg)/arg;
else

sinc = 1;
end

endfunction

An event is an occurrence of a particular change in the state of the circuit. They are
detected by setting up a statement that looks for the desired change. When the event
occurs, an action is taken. Thus, analog event statements consist of two parts, the part
that specifies the event and the part that specifies the action to be taken when the event
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occurs. This is different from event statements found in initial and always processes,
which simply block execution of the process until the event occurs (5§7.6.2p216).

@(event-expression)
action;

Unlike event statements in initial and always processes, event statements in analog
processes are non-blocking. Thus, execution does not wait on an event in an analog
process, it simply passes over the event statement except at the instant the event
occurs. In other words, at the instant the event occurs the action is executed. At other
times, the event statement is simply bypassed.

Example:
@(cross(V(clk) – vth, dir))

state = (V(d) > vth);

The action of an event statement must not contain an analog operator or a contribution
statement.

An event expression consists of one or more event monitors separated by the or oper-
ator. The event action is triggered if an event is produced by any of the monitors. The
following sections describe the available event monitors.

In Verilog-AMS event expressions found in analog processes may contain the tradi-
tional Verilog event expressions described in Section 7.6 on page 216. In this way,
events that occur in registers and event-driven nets can affect the behavior of analog
processes. Similarly, the event expressions described in this section can be used in ini-
tial and always processes.
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6.8.1  Initial and Final Step

The initial_step and final_step events occur on the first and last point of a particular
simulation. Both accept optional arguments that specify the particular analyses (or
type of simulation) that must be running for the events to occur. The analyses are
given in the form of quoted strings. Which strings are associated with particular anal-
yses is implementation dependent, however “ac”, “dc”, “noise” and “tran” are used
for the traditional SPICE analyses (see Table 11 on page 177).

Examples:
@(final_step) begin

if (faults)
$strobe(“%d faults occurred in %m.\n”, faults);

end
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The timer function produces analog events at specific points in time. The general
form is

timer ( startTime, <period>, <timeTol> )

where startTime is required; period and timeTol are optional arguments. All argu-
ments are real expressions.

The timer function schedules an event that occurs at, or just beyond, startTime. The
event is guaranteed to be within timeTol of the requested time. If the period is speci-
fied and is greater than zero, the timer function schedules subsequent events at multi-
ples of period from startTime.

An example of the timer event function is shown in the pseudo-random bit stream
generator given in Listing 2.
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and
@(final_step(“tran”)) begin

if (count)
$strobe(“average delay = %g.\n”, tsum/count);

end

6.8.2 Autonomous Events

6.8.3  Threshold Crossings

LISTING 2  Pseudo-random bit stream generator.

module bitStream (out);
parameter real start = 0.0;
parameter real period = 1.0 from (0:inf);
output out;
electrical out;
integer x;

analog begin
@(timer(start, period))

x = ($random >= 0) ? 1 : 0;

// time that the first bit is emitted (s)
// period of bit updates (s)

V(out) <+ transition( x, 0.0, period/100.0 );
end

endmodule

Two functions are available that monitor threshold crossings, cross and above. The
above function is not yet accepted as part of the standard and so may not be in all
implementations.
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The cross function is used for generating an analog event when the result of an
expression passes through zero in a particular direction. In addition, cross controls the
time step to accurately resolve the crossing. The general form is

cross ( argument, <direction>, <timeTol>, <exprTol> )

where argument is required, and direction, timeTol, and exprTol are optional. All
arguments are real expressions, except direction, which is an integer expression.

If the direction is specified as 0 or is not specified, the event and time step control
occur on both positive and negative going zero crossings of the argument. If dir is +1
(or –1), the event only occurs on rising (falling) transitions of the signal. If any other
value is specified, the cross function is disabled.

The underlying implementation will have limited precision and so the event may not
occur precisely at the threshold crossing. Tolerances can be specified to control the
accuracy of the timing of the event. The event will always occur at, or just beyond, the
zero crossing. If exprTol is given then the event will occur while the absolute value of
the argument is less than exprTol. If timeTol is specified, then the event will occur
within timeTol seconds of the zero crossing.

An application of the cross event function is given in the D-flip-flop of Listing 3.
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LISTING 3  D flip flop.

module dff (q, d, clk);
parameter integer dir = +1 from [–1:+1] exclude 0;

// if dir=+1, rising clock edge triggers flip flop
// if dir=–1, falling clock edge triggers flip flop

output q; voltage q; // Q output
input clk; voltage clk; // Clock input (edge triggered)
input d; voltage d; // D input
integer state;

analog begin
@(cross(V(clk) – 0.5, dir))

state = (V(d) > 0.5);
V(q) <+ transition( state ? 1 : 0 );

end
endmodule

The above function is similar to the cross function, except that while cross only pro-
duces events in an analysis that advances time, above will also fire in equilibrium
point analyses (such as a DC operating point or a swept DC analysis). It does not
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accept a direction specifier, instead it generates an event as the argument becomes
positive. The general form is

above( argument, <timeTol>, <exprTol> )

It produces events

When the argument transitions from negative to positive during a swept analysis
(swept DC) or an analysis where time is advancing (transient, etc.), or

during a DC operating point analysis, an IC analysis, or the first point of a DC
sweep if the argument is positive.

An application of the above event function is shown in Listing 4. It is sentinel code
that produces a warning message as a breakdown voltage is exceeded.

The analog process (5§6.1p196) is the only construct that can be used to hold behav-
ior that has primarily continuous time semantics. For discrete-event behavior, there
are several different constructs available. For simple behavior, continuous assign-
ments and net assignments can be used. They are described in Sections 7.4.2 and
7.4.3. For more complex behavior, initial and always processes are used.
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LISTING 4 Warn on breakdown.

module breakdown (n);
parameter real threshold = 1000.0; // message emitted when this level exceeded (V)
parameter message = “Warning: breakdown voltage exceeded.”;

input n; voltage n;
integer given;

analog begin
@(above(V(n) – threshold)) begin

if (!given)
$strobe(message);

given = 1 ;
end

end
endmodule

// the message to print
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Every initial and always process starts a separate concurrent activity flow as simula-
tion begins (4§2.1.4p103). The flow takes the form of a statement or a block of state-
ments. The initial process will run through that flow once and then terminate. The
always process continually repeats its flow, never exiting or stopping. It is an endless
loop. However, execution of the flow can pause at particular points, waiting either for
a particular interval of time to expire or for some change to occur in an external pro-
cess that allows execution to continue. The language constructs that temporarily block
the execution of the process are described in Section 7.6. In this way, the initial and
always processes are different from the analog process in a fundamental way. An ini-
tial process often blocks and an always process should always block, but analog pro-
cesses never block. The semantics of statements that are allowed in analog processes
do not support it.

Initial and always processes are evaluated by the discrete-event kernel. They take the
form,
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7.1  Initial and Always Processes

7.2 Procedural Blocks
As with analog processes (5§6.2p196), procedural blocks are used with initial and
always processes to describe more complex behavior. A procedural block is defined
as a sequence of statements surrounded by a begin-end pair (4§2.1.7p106). As such, a
procedural block is also sometimes referred to as a sequential block. When the block

initial statement;
always statement;

Example:
module clock (out);

output out;
reg out;

initial out = 0;

always #50 out = ~out;
endmodule

In this example execution of both the initial and always processes starts simulta-
neously. The initial process executes its one statement and then terminates. It is used
to initialize the value of out. The always process blocks (pauses) for 50 time units and
then executes a statement that inverts the contents of the out register. It then restarts
the process, and will do so repeatedly until the simulation is terminated. In this way,
this module produces an output that toggles between 0 and 1 and back with a period
of 100 time units.
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begin
statement;
statement;

end

Example:
module decade_counter (out, clk);

input clk;
output [3:0] out;
reg [3:0] out;

initial out = 0;

always begin
@ (posedge clk)

out = out + 1;
if (out > 10)

out = 0;
end

endmodule
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is executed, the statements are executed in order. Anywhere a single statement is
allowed, a block can be used instead.

In this example, a procedural block allows an always process to be described with
more than one statement. Within the block, the statements are executed in order.

7.2.1 Named Blocks

As mentioned before, procedural blocks can be named by adding a colon and a name
after the begin keyword (5§6.2.1p197). Naming a block creates a new scoping level,
making it possible to declare local variables within the block. It also makes it possible
to disable a block. When a block is disabled, it terminates execution of the block and
begins execution at the statement that follows the block.

disable block_name;

It is not possible to disable a named block that is contained within an analog process,
but it is possible to disable a block running in a remote process (by using hierarchical
names (5§9.4p230)) as well as disable the current block, as shown in this example.
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An alternative to procedural blocks, which executes a group of statements sequen-
tially, is concurrent blocks, which executes a group of statements in parallel. In other
words, while a procedural block runs a group of statements by executing them in
order and waiting for each to complete before starting the next, the concurrent block
starts each statement simultaneously and waits for the last to complete before exiting
the block (4§2.1.8p106). A concurrent block is a group of statements surrounded by a
fork-join pair.
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Example:
begin : break

for (i = 0; i < n; i = i + 1) begin : continue
if (...)

disable continue; // proceed to next iteration
if ( . . .)

disable break; // exit the for loop

end
end

The disable statement is used to mimic the functionality of break and continue state-
ments in C. When disable continue; is executed, it causes the continue block to be ter-
minated, which has the effect of causing the for loop to proceed to the next iteration.
When disable break; is executed, it causes the break block to be terminated, which
has the effect of causing the for loop to exit completely.

7.3 Concurrent Blocks

fork
statement;
statement;

join

Example:
module counter16 (out, clk, reset);

input reset, clk;
output [15:0] out;
reg [15:0] out;
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Procedural assignment statements function in a manner similar to assignment state-
ments in traditional programming languages such as C and C++. They are found in
initial and always processes.

target = expr;

They consist of a target, which is a variable name found on the left side of the assign-
ment statement, and an expression, found on the right side. When the flow of control
reaches the procedural assignment, the expression is evaluated. Then the value of the
expression replaces the contents of the target variable. There are two types of proce-
dural assignments that differ in when the target is updated. In the regular assignment,
which uses ‘=’ as an assignment operator, the targets is updated before beginning exe-
cution of the next statement.

Example:
out = ~out;
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always fork : main
out = 0;
forever begin

@ (posedge clk)
out = out + 1;

end
@(posedge reset)

disable main;
join

endmodule

In this example, fork causes three statements to be launched simultaneously. The first
initializes out to 0 and then completes. The second is a forever loop (5§7.8.1p220)
that counts the number of rising edges on clk. Since it is a forever loop, it will never
complete on its own. The last statement immediately blocks and waits for a rising
edge on the reset input. As long as the edge does not come, the forever loop will con-
tinue to count. When the rising edge on the reset line occurs, the main concurrent
block is disabled or terminated. At this point the always process cycles and restarts
the main concurrent block, which simultaneously reruns the three statements, reset-
ting the counter and restarting the count.

7.4  Assignments

7.4.1  Procedural Assignments
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The regular assignment is sometimes referred to as a blocking assignment because it
may include a construct that causes the assignment to be delayed, during which time
execution of the process blocks (5§7.6.4p218).

A non-blocking procedural assignment is similar, but it uses ‘<=’ as the assignment
operator

target <= expr;

The actual update of the target occurs only after the process that contains the assign-
ment blocks. And in fact, the update only occurs after all of the right-hand sides of
every non-blocking assignment statement waiting on the same edge in the entire
design have been evaluated. As a result, the new value of the target is not available in
the next procedural statement (4§2.1.10p 108).

Example:
@(posedge clk) begin

a <= b;
b <= a;

end

In this example, the values of a and b are swapped at every rising edge on clk. The
semantics of the non-blocking assignment eliminate the need for an additional vari-
able to temporarily hold the value of a and result in a and b being simultaneously
updated. These same semantics can sometimes result in seemingly anomalous results
when blocking and non-blocking assignment are combined.

Example:
a = 25;
a<=3;
b = a;

In this example, b becomes 25 even though the second statement changes a to 3
because the value of a does not change immediately. Indeed, the flow of control does
not stop (block) to update a, rather it keeps going until blocked by some other state-
ment, and at that point a is updated.

7.4.2  Continuous Assignments

Like a regular procedural assignment, continuous assignments consist of a target fol-
lowed by the ‘=’ assignment operator and an expression, but in this case they all fol-
low the assign keyword and the target must be a net rather than a variable
(4§2.1.3p102).

assign target = expr;
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Example:
assign a = b & c;

Continuous assignment statements are found outside the initial and always procedural
blocks. As such, they are not evaluated at isolated points in time. Rather, they are con-
tinuously enforced. Effectively, any time any of the arguments in the expression, in
this case b and c, change, the expression is re-evaluated and the target updated. They
are used to behaviorally define combinational logic.

7.4.3 Net Assignments

Net assignments are simply the combination of continuous assignments with a net
declaration.

Example:
wire c = a ^ ~b;

This is equivalent to

wire c;
assign c = a ^ ~b;

7.4.4 Procedural Continuous Assignments

Continuous assignments allow for the description of combinational logic whose out-
put is updated any time any one of the inputs change. There is a procedural version of
the continuous assignment statement that allows for continuous assignments to be
made to registers for specified periods of time. To understand their use, consider the
following model of a simple d-flip flop.

module dff (q, d, clk, clear);
input clear, clk, d;
output q;
reg q;

always @(posedge clk)
q = #5 d;

always @(posedge clear)
#5 assign q = 0;

always @(negedge clear)
#5 deassign q;

endmodule

In this example, the first always process implements the behavior of the flip-flop rela-
tive to changes in the clk input. When a rising edge occurs on clk, the d input is sam-
pled and then assigned to the q output after a delay of 5 units of time. The second
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always process implements the behavior of the flip-flop when clear is asserted. In this
case, the assign statement is evaluated on the rising edge of clear. This represents an
important difference between a continuous assignment and a procedural continuous
assignment. The procedural continuous assignment is found within a procedural block
(in this case an always process) and is executed at a specific point in time, when the
control flow reaches it. When this occurs, the expression on the right-hand side of the
procedural continuous assignment is attached to the target, in this case 0 is attached to
q, resetting the flip-flop. If the right-hand side were an expression with terms whose
values could change over time, q would be automatically updated whenever the value
of the terms changed. As long as an expression is attached to a register by a proce-
dural continuous assignment, any non-continuous procedural assignments made to
that register are ignored. In this way, rising edges clk will not cause q to change from
0 as long as clear remains true. The final always process detaches the expression from
q when the value of the clear input becomes false. This does not directly result in q
changing from 0, but does remove the override on q so rising edges on clk allow q to
take the value of d.

7.5  Nets and Registers
Nets and registers play a central role in describing behavior outside the analog pro-
cess. They differ in that registers are assigned values from within processes whereas
nets (see Table 8 on page 165) are assigned values either by structural models or using
continuous assignments. Things are somewhat different in analog processes from
which analog nets can be assigned values indirectly through an access function using
contribution statements (5§6.4p198).

Either nets or registers can be used as inputs to initial and always processes, to contin-
uous assignments, and to structural models. In fact, the input port of a structural mod-
ule that expects a traditional Verilog wire type could be fed with an expression
involving registers. For example, it is common to invert the value of a register before
passing it into a gate using the ‘~’ operator.

Example:
nand (c, ~a, ~b);

Finally, while either nets or registers can be used as output ports of a module, only
nets can be used as input ports.
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7.6  Timing Control
Timing control in Verilog behavioral descriptions is performed by blocking or paus-
ing execution of a process for some period of time. There are three mechanisms in
which this occurs: delays, events, and waits.

7.6.1  Delays

Delay is added to an initial or always process using a ‘#’ followed by a constant val-
ued expression (made up of numbers and parameter values) that specifies the delay.

#const_expr statement;

This is shown in the following example, which was taken from the clock module
given on page 209.

Example:
always #50 out = ~out;

The delay is added by the use of #50. It indicates that execution should be paused for
50 time units (as specified by the `timescale directive (5§1.4p151)). Notice that there
is no semicolon between the delay specification and the subsequent statement. If no
subsequent statement is desired, a semicolon should immediately follow the delay.

In addition to the delay described here, other forms of discrete-event delay are avail-
able. It is possible to associate delay with a net (5§2.5p164), a gate (5§9.3p229), and
with an assignment statement (5§7.6.4p218).

7.6.2  Events

The delay operation just described pauses execution of an initial or always process for
a fixed period of time. In a similar manner, Verilog also provides the ability to pause
execution until a specified event occurs.

@ (event_expr) statement;

An event occurs whenever the value of a net or register changes. In addition, all ver-
sions of Verilog support named events, which are explicitly created events that are
discussed next. When executed, an event statement will block execution while it mon-
itors one or more nets, registers, or named events. As soon as the desired event occurs,
the event delay terminates and control is passed to the next statement. Changes that
occur prior to when control passes to the event statement are ignored. Also ignored
are old values being re-assigned to a net or register that is being monitored while the
event statement waits for an event. Thus, an assignment to a net or register only cre-
ates an event if it causes a change in value.
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Named Events. A named event allows the evaluation of code to be triggered by
remote events without the need to be aware of the details of the event, such as how it
was generated. These events can even traverse module boundaries. To produce a
named event, it is necessary to first declare it, then it must be triggered using the
operator, finally it is sensed. This is illustrated in the following example, which is a
‘wireless’ clock generator. In this example, the module clockgen produces a named
event tick every 100 time units. This event is sensed in the module timestamp, causing
it to print the time.

Example:
module top;

clockgen clock();
timestamp ts();

endmodule

module clockgen;
event tick;
always

#100 tick;
endmodule

module timestamp;
always @clock.tick

$strobe("%g", $abstime);
endmodule

Event Expressions. The event statement monitors changes in the value of nets and
registers using an event expression. There are two possible operations that can be per-
formed on events when involving them in an expression. They can be filtered or com-
bined. The keywords posedge or negedge applied to a net or register will filter out
events associated with undesired changes. In particular, posedge d produces an event
when d transitions from 0 to 1, from 0 to x, or from x to 1; negedge d produces an
event when d transitions from 1 to 0, from 1 to x, or from x to 0. A d-flip-flop example
shows how to use events to produce an edge triggered model.

module dff (q, d, clk);
input clk, d;
output q;
reg q;

always @(posedge clk)
q = #5 d;

endmodule

Events are combined using the or keyword, meaning that an event on ‘a or b’ occurs
whenever there is an event on either a or b.
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In Verilog-AMS event expressions found in initial and always processes may contain
the analog event monitor functions described in Section 6.8 on page 204. In this way,
events that occur in analog signals can affect the behavior of initial and always pro-
cesses. Similarly, the event expression described in this section can be used in analog
processes.

Event statements work differently between initial and always processes and analog
processes (5§6.8p204). In initial and always processes, execution pauses at the event
statement until the desired event occurs, at which point execution continues starting at
the next statement. In an analog process, execution does not pause at the event state-
ment. Rather, execution simply bypasses the next statement except at those instants
when the desired event occurs.

7.6.3  Waits

Whereas the event statements are used to implement models that wait for edges, the
wait statements are used to implement level triggered models.

wait (expr) statement;

The wait statement takes one argument. If the value of the argument is 1 the subse-
quent statement is immediately executed. If the value of the expression is 0, execution
is blocked until the argument becomes 1.

Both the event and wait statements watch for a situation that is generated by an exter-
nal process. The difference between the two is that the event statement is edge-trig-
gered whereas the wait statement is level-triggered. So if a is 1, then

wait (a) b = 1;

will immediately set b to 1 whereas

@(posedge a) b = 1;

will wait until a transitions away from 1 and then back again before setting b to 1.

7.6.4  Delayed Assignment

If the statements for introducing various forms of delay that were presented earlier in
this section are combined with an assignment statement, they will delay both the eval-
uation of the expression on the right-hand side of the assignment, as well as the updat-
ing of the target variable.

Examples:
#10a = b;
@(posedge clk) q = d;
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What is often required is that the delay be inserted between the evaluation of the right-
hand side and the update of the target. Verilog provides various forms of delayed
assignment for these cases. To provide a fixed delay in a procedural assignment, insert
the delay specifier immediately after the assignment operator.

Examples:
a = #10 b;
a <= #10 b;

The first example is equivalent to the following code fragment
begin

tmp = b;
#10 a = tmp;

end

In the second example, the value of b is recorded, an update to a is scheduled for 10
time units in the future, and then execution passes to the next statement. Then, 10 time
units later, the value of a is updated to the saved value of b. The behavior of both of
these examples is the genesis for the names blocking and non-blocking assignment. In
the first example, the process blocks waiting for the delayed assignment, in the second
example the process does not block.

Similarly, one could delay the assignment until a particular event by inserting an event
specifier immediately after the assignment operator.

Examples:
q = @(posedge clk) d;
a <= @(posedge c) b;

The first example is equivalent to the following code fragment
begin

tmp = d;
@(posedge clk)

q = tmp;
end

Delay is applied to continuous assignments and net assignments by placing the delay
specifier before the target.

Examples:
assign #5 a = ~b;
assign #5 a = ~b, c = ~d;
wire #10 c = a^b;
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7.7  Conditionals
The conditionals available in initial and always processes are the same as those avail-
able in analog processes. They are described in Section 6.5 on page 200.

7.8  Iterators
The iterators available in initial and always processes are largely the same as those
available in analog processes. They were described in Section 6.6 on page 202. The
one iterator allowed in initial and always processes that is not allowed in analog pro-
cesses is the forever loop.

7.8.1  Forever Loop

The forever loop simply repeats the statement that follows it forever.

forever
statement;

An example of a module that uses a forever loop is given on page 212.

7.9  User-Defined Functions and Tasks
Verilog provides two ways of encapsulating code into reusable blocks within a mod-
ule: the function and the task. Functions are provided to allow code to be shared,
whereas tasks are provided to allow shared hardware to be modeled. Functions and
tasks are described more fully next, with Table 14 highlighting the differences.
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7.9.1  Functions

A function is code that is encapsulated and parameterized so that it can be shared
throughout a module. As such, it is similar to functions in conventional programming
languages. Functions take one or more arguments and return a single value. They
must be defined within a module and are called from expressions. A function may
declare its own variables, but unlike variables in modules and tasks, the values are not
retained between calls to the function. A function cannot contain any timing control,
(#, @ or wait); nor can they call tasks.

A function definition begins with the keyword function, optionally followed by the
type of the return value of the function, then the name of the function and a semico-
lon. One or more input arguments may be declared along with any number of vari-
ables. The body of the function consists of a single statement that follows the
declarations, and the function ends with the keyword endfunction. The default return
type is a logic value. The return value is set by assigning a value to a variable whose
name is the same as the name of the function.

Example:
function [15:0] mux;

input [15:0] in1, in2, in3, in4;
input [1:0] select;

case (select)
2'b00:mux = in1;
2'b01: mux = in2;
2'b10: mux = in3;
2'b11: mux = in4;

endcase
endfunction

7.9.2  Tasks

A task represents hardware that is encapsulated and parameterized so that it can be
shared throughout a module. As it represents shared hardware, the values of any vari-
ables are retained at all times. Furthermore, each task represents a single piece of
hardware, meaning that there is only one set of variables.

Tasks take zero or more parameters that can be input, output, or inout. When called,
the values of input and inout parameters are copied into the task, and when the task
terminates and returns, the values of the output and inout parameters are copied into
the calling process.

Tasks must be defined within a module and they are called as an independent state-
ment and not as part of an expression. Unlike functions, a task can contain timing
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control (#, @ or wait) and can call tasks. A task can call itself, or be called from other
tasks that it has called. It can even be called while it is still running as a result of a pre-
vious call from another process.

Example:
module top();

integer fib;

initial repeat (30) begin
#1 fibonacci(fib);
$strobe("%d", fib);

end

task fibonacci;
output out;
integer out, prev, prev2;

begin
if (prev === 'hx) begin

prev = 0;
prev2 = 1;
out = 0;

end else begin
out = prev + prev2;
prev2 = prev;
prev = out;

end
end

endtask
endmodule

8  Mixed Behavior
Purely continuous time behavioral models are written using an analog process. Purely
discrete-event behavioral models, either digital or analog, use initial or always pro-
cesses. In addition, there are times when mixed behavioral models are needed. Either
continuous time models driven by discrete-event processes or visa versa. Verilog-
AMS supports this by allowing restricted access to continuous time nets and variables
from a discrete-event process and to discrete-event nets and variables from a continu-
ous-time process. There are four types of mixed-behavior access.

Monitor the value of discrete-event nets and variables from an analog process.

Monitor the value of continuous-time signals and variables from an initial or
always process.
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Detect discrete events from within an analog process.

Detect continuous-time events from within an initial or always process.

Before describing these access methods, it is important to again mention the issue of
variable capture. Any variable or register that is assigned a value from within an ana-
log process is captured by that process, meaning that it is not possible to assign it a
value outside that process. Such variables are said to be captured or owned by the ana-
log kernel. Conversely, if a variable is assigned a value outside an analog process, say
in a initial or always process, it is not possible to also assign it a value from within an
analog process. Such variables are said to be captured or owned by the discrete-event
kernel.

8.1  Discrete-Event Values in an Analog Process
From within an analog process it is not possible to set the value of a discrete-event
net, such as a wire or wreal, or a variable or register captured by the discrete-event
kernel, but it is possible to read the value of such objects. Furthermore, if an analog
process is actively monitoring the value of a discrete-event signal or variable, the pro-
cess evaluates whenever the value of the signal or variable changes. Consider the fol-
lowing simple 16-bit digital-to-analog converter model.

module dac (out, in);
parameter fullscale = 1.0;
input [15:0] in;
electrical out;

analog
V(out) <+ in * (fullscale/65536);

endmodule

In this module, the value of the 16-bit bus in is cast to an integer before it is used. In
this case it would be an error if in contained any bits that had values of x or z, and so
with this model it is important to use it in a setting where that could not occur.

In this example, the analog process is sensitive to the value of in at all times, meaning
that in addition to the times when it evaluates for other reasons, the process is guaran-
teed to evaluate immediately after a change in the value of in. This is not true in all
cases, because in some cases the analog process is only sensitive to the value associ-
ated with the discrete-event kernel at isolated instants in time. Consider the following
modification to the above example.
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module dac (out, in, clk);
parameter fullscale = 1.0;
input [15:0] in;
input clk;
electrical out;
real smpld;

analog begin
@(posedge clk)

smpld = in * (fullscale/65536);
V(out) <+ smpld;

end
endmodule

In this case the analog process is only sensitive to the value of in at the instant of a ris-
ing edge on clk, and so the value on in can change without causing the process to eval-
uate.

Accessing a value of x (unknown) or z (high impedance) from a register or net in an
analog process is an error except when accessed by specific constructs that allow it.
These constructs can be used to convert the undesirable values to acceptable values
before further processing. In particular, one can use the equality (‘===’) or inequality
(‘!==’) operators to test values that may potentially contain an x or z, or one may use
case, casex, or casez statements on values that may contain an x or z. One may also
use binary, octal, or hexadecimal constants that may contain an x or z as arguments to
these operators and statements. These ideas are used to create a analog tristate buffer.

module buf3 (out, in);
input in;
output out;
electrical out;
real value;

analog begin
@(in) case (in)

1'b0: value = 0;
1'b1: value = 1;

endcase
if (in !== 1'bz)

V(out) <+ value;
end

endmodule

This module evaluates the case statement whenever in changes and will set the local
variable value to 0 if in is 0 and to 1 if in is 1. Otherwise it leaves value unchanged.
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Finally, it tests the value of in and if not z it drives V(out) with value, otherwise it
leaves out un-driven.

8.2  Discrete Events in an Analog Process
Notice that in the previous two examples, a discrete event was the target of an @
statement in an analog process. This is always possible. Any event, regardless of its
source, may be used in any event expression, regardless of where it resides.

8.3  Continuous-Time Values in an Initial or Always Process
The value of continuous-time signals and variables can be read from within a discrete-
event process without restriction. The following is an example where a continuous
time signal V(in) is sampled with an always process to create a sample-and-hold.

module sah (out, in, clk);
input in, clk;
output out;
electrical in;
wreal out;
real smpld;

always @(posedge clk)
out = V(in);

assign out = smpld;
endmodule

It is important to remember that accessing an analog value from within a discrete pro-
cess does not cause the two processes to synchronize. In other words, the analog pro-
cess does not necessarily place a time point at the time when one of its values is
sampled from a discrete process so as to accurately resolve the value. In this case if it
is desired that the value used for V(in) be very accurate an analog process should be
added to control the time point selection. For example, adding

analog @(posedge clk)

would result in the analog kernel placing a time point at the time when V(in) was sam-
pled.

8.4  Continuous Events in an Initial or Always Process
As mentioned above in Section 8.2, analog events may be used in an event expression
found in either an initial or always process. The following example uses this to model
a comparator.
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module comparator (out, in);
input in;
output out;
electrical in;
reg out;

always @(cross(V(in)))
out = V(in) > 0.0;

endmodule

8.5  Calling Functions
Analog functions can only be called from an analog process. Other user defined func-
tions can only be called from outside an analog process.

9  Hierarchy
Hierarchical hardware descriptions are supported by allowing modules to be instanti-
ated within other modules. Higher-level modules create instances of lower-level mod-
ules and communicate with them through input, output, and bidirectional ports. The
behavior of instantiated modules may be customized using parameters. The parameter
values used for the instantiated module can be set ether when instantiating the module
or from anywhere within the hierarchy using a defparam statement (5§9.4.2p233).

To describe a hierarchy of modules, the user provides textual definitions of various
modules. Each module definition stands alone; the definitions are not nested. State-
ments within the module definitions create instances of other modules, thus describ-
ing the hierarchy.

9.1  Modules
A module definition is enclosed between the keywords module and endmodule. The
identifier following the keyword module is the name of the module being defined. It
must be unique in that no other module or primitive can have the same name. The
optional list of ports specify an ordered list of the module’s ports. The order used can
be significant when instantiating the module. The module may also declare a set of
parameters using parameter statements. The order in which the parameters are
declared may also be significant when instantiating a module.

The keyword macromodule can be used interchangeably with the keyword module to
define a module. An implementation can choose to flatten the hierarchy of macro-
modules for efficiency.
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A top-level module is a module that is defined but never instantiated by any other
modules.

Behavioral descriptions would be found in the analog, initial, and always processes or
in continuous assignments within the module. If the module is self-contained in that it
does not instantiate any other modules, the module is considered a behavioral module.
If the module instantiates other modules but does not contain analog, initial, or
always processes it is considered a structural module. It is also possible for a module
to contain both structural descriptions (instances of other modules) and behavioral
descriptions (includes processes), or for it to contain neither. A module that contains
neither generally contains constants that are accessed from other modules using hier-
archical references (5§9.4p230).

9.2  Instantiation
Instantiation allows one module to incorporate a copy of another module into itself.
Module definitions do not nest. That is, one module definition does not contain the
text of another module definition within its module-endmodule keyword pair. A mod-
ule definition nests another module by referencing or instantiating it.

Consider the module definition of the comparator given in Listing 5.

A single instance of this module might be created as follows,

comparator C1(out, in, gnd);
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LISTING 5 A comparator.

module comparator (out, pin, nin);
parameter real td = 1n from (0:inf);
parameter real tt = 1n from [0:inf);
output out;
input pin, nin;
voltage out, pin, nin;
real Vout;

analog begin
@(cross(V(pin) – V(nin), 0))

Vout = ((V(pin) > V(nin)) ? 1 : 0);
V(out) <+ transition(Vout, td, tt);

end
endmodule

// time delay (s)
// output transition time (s)

;
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In this case, an instance of the module comparator is created and named C1. The
name is optional.

comparator (out, in, gnd);

The ports of the module are connected to nets out, in and gnd, with the association
being done using the order in which the ports were defined. It is also possible to con-
nect the nets to ports using the name of the ports,

comparator C1(.pin(in), .nin(gnd), .out(out));

In this example net in is connected to port pin, net gnd is connected to port nin, and
net out is connected to port out. Notice that in this case the nets were given in a differ-
ent order.

It is also possible to pass parameters into the module when instantiating it.

comparator #(1n, 2n) C1(out, in, gnd);

As with ports, the argument values can be associated with parameters either by order
or by name. In the above example they are associated by order, and below they are
associated by name.

comparator #(.tt(2n), .td(1n)) C1(out, in, gnd);

If a module is defined without ports, or if all the ports are to be left unconnected, the
list of connections would be empty, but the parentheses are still required to be present.

Items can be left unspecified in both port and parameter lists. If passing by name, sim-
ply do not supply the name or the value. When passing by order, simply leave out the
value. If the value is not the last in the list, the commas used to separate the values
must still be provided even though the value itself is not (3§2p41). For example, with
the comparator above, to give the value of td by order without giving tt, use

comparator #(, 2n) C1(out, in, gnd);

Instantiation occurs within a module definition, but outside any analog, initial, or
always processes.

Example:
module smpl_ckt;

electrical n;
ground gnd;

vsrc #(.dc(1)) V1(n, gnd);
resistor #(.r(1k)) R1(n, gnd);

endmodule
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9.2.1  Multiple Instantiation

A single instance statement may instantiate more than one instance of a module.
There are two ways in which this might happen. In the first, one simply gives addi-
tional instance names (optional) and port lists on the instance line. For example, one
could terminate a bus with the following collection of resistors,

resistor #(50) r1 (bus[1], gnd),
r2 (bus[2], gnd),
r3 (bus[3], gnd),
r4 (bus[4], gnd),
r5 (bus[5], gnd),
r6 (bus[6], gnd),
r7 (bus[7], gnd),
r8 (bus[8], gnd);

With the very regular nature of this case it is possible to express this same set of resis-
tors even more succinctly with the other form of multiple instantiation, arrays of
instances.

resistor #(50) r[1:8] (bus, gnd),

In this example, an array of eight instances is created, r[1] to r[8]. One each is con-
nected to the members of bus and all are connected to gnd. Other than being integers,
there are no constraints on the array bound. In particular, one bound need not be larger
than the other, and indeed they may both be the same, in which case only one instance
is generated. If a scalar net is passed to a port of an array of instances, then it is con-
nected to that port on each of the instances. If the net being passed in is an array, then
the members of the net are distributed to the instances in order. If the port is a scalar,
then it will consume one member of the net. If it is an array itself, then it will consume
multiple members of the net. In the end, all members of both the net and the ports
must be consumed.

One can create multidimensional arrays of instances by creating arrays of arrays of
instances.

9.3  Gate-Level Descriptions
Verilog provides a set of predefined gate level primitives as shown in Table 15. These
primitives can be instantiated just like modules. The latch below illustrates the use of
these gate level primitives.
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module latch (q, qb, rb, sb);
input sb, rb;
output q, qb;

nand (q, sb, qb),
(qb, q, rb);

endmodule

This example instantiates two unnamed nand gates. By convention, output ports are
specified before input ports on built-in primitives. Delay is added to the gates by add-
ing a delay specifier after the gate’s module name.

module latch (q, qb, rb, sb);
input sb, rb;
output q, qb;

nand #5 (q, sb, qb),
(qb, q, rb);

endmodule

9.4  Hierarchical Names

9.4.1  Rules of Scope

The names used in a context need not be declared within that context. When a name is
encountered the local context is searched for a declaration. If the name is not found,
the search is continued by moving higher in the instantiation hierarchy (closer to the
root or top-level module). The hierarchy itself is made up of modules and named
blocks. So if a name is encountered in a named block, that block is searched for decla-
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rations for that name. If not found, the context that contains the named block is
searched. That may either be a module definition or another named block. If still not
found, the search continues until it eventually leaves the module definition. At that
point it progresses up the instantiation hierarchy. So the module that instantiates the
module with the name is searched, and so on. Eventually, the search may reach the
top-level modules where it ends. If still not found, the name is undeclared, which is an
error. Once the search leaves the module where the name was originally used, it will
not find particular types of objects, such as nets, variables, and parameters. These
objects must be declared local to the module.

module alpha;
integer a;
gamma();

analog function real uno;
input arg;
real arg;
begin

uno = arg;
end

endfunction
endmodule

module beta;
integer b;

analog function real dos;
input arg;
real arg;
begin

dos = arg;
end

endfunction
endmodule

module gamma;
integer c, d;
analog begin

begin : delta
integer d;
d = 1;
c = 1;
d = uno(1);

a = 1;

// this d is the one declared in the named block delta
// this c is the one declared in the module gamma
// this uno is the function defined in alpha, it is
// available because gamma is instantiated from alpha
// this is an error, the a in alpha is unavailable because
// it is a variable outside of module scope
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d = dos(1); // this is an error, dos is defined in beta, which is not in
// the instantiation path for gamma and is not available

end
end

endmodule

Hierarchical Names

Hierarchical names consist of a path name of identifiers separated by periods (‘.’).
The first identifier is found by searching up the procedural and module hierarchy.
From where the first identifier is found, each succeeding identifier in the path name
specifies the named scope with which to continue searching downward. The last iden-
tifier specifies the entity being searched for.

With hierarchical names and the rules of scoping, objects often have multiple names,
and those names depend on where the name is found. For example, objects in the
example have the following names from within the named block delta if module
alpha is instantiated as alpha1 and beta is instantiated as beta1,

Objects defined in module alpha,
alpha1
alpha1.a
uno
alpha1.uno

Objects defined in module beta,
beta1
beta1.b
beta1.dos

Objects defined in module gamma,
d (this is the d in delta)
c
gamma
gamma.c
gamma.d (this is the d defined in gamma outside delta)
delta.d (this is the d in delta)
gamma.delta.d (this is the d in delta)
alpha. gamma
alpha.gamma.d (this is the d in delta)
alpha.gamma.c
alpha.gamma
alpha.gamma.d (this is the d defined in gamma outside delta)
alpha.delta.d (this is the d in delta)
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alpha.gamma.delta.d (this is the d in delta)

From a stylistic perspective it is generally preferred to use the shortest of the various
names that can be used for a particular object.

A hierarchical name that refers to an object outside of the module where the name is
found is often referred to as an OOMR (rhymes with goo-mar), which is short for out-
of-module-reference.

From within an analog process block, it is possible to use hierarchical name referenc-
ing to access signals on an external branch, but not external analog variables or
parameters. When accessing external branches, a branch signal (its potential or flow)
can be monitored (probed); for source branches, contributions can be made to the out-
put signal.

9.4.2  Defparams

Using the defparam statement, parameter values on any module instance throughout
the design can be set using the hierarchical name of the parameter.

Consider a situation where an instance of receiver RX1 contained two instances of fil-
ter, Ifilter and Qfilter, and that filter supported a parameter bw. Those parameters
could be set from a top-level module as follows.

module setparams;
defparam RX1 .Ifilter.bw = 2.5M,

RX1 .Qfilter.bw = 2.5M;
endmodule

The expression on the right-hand side of defparam assignments must be a constant
expression involving only constant numbers and references to parameters. If the
expression contains parameters, they must be declared in the same module that con-
tains the defparam statement.

The defparam statement is particularly useful for grouping all of the parameter value
override assignments together in one module.

9.5  Mixed Signal Structure
Mixed-signal structure is presented in detail in Section 4 in Chapter 4 (beginning on
page 121) and so will not be discussed further here.
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10 Other Features of Verilog-HDL
Many features of the Verilog language are beyond the scope of this book. In particu-
lar, the following topics are not covered in this book, but you should be able to find
out about them by reading any of the available Verilog-HDL books [1, 5, 23, 27] or
the Verilog-HDL language reference manual [16].

strengths and switch-level modeling

complex delay specifications

user defined primitives (UDPs)

integer time variables

numerous compiler directives

numerous system tasks and functions

specify blocks, specparams

pin to pin path delays and state dependent path delays (specify)

timing constraint checks (ex. setupandhold)

Verilog Procedural Interface (VPI) routines

What’s Next

This chapter completes the presentation of Verilog-A/MS. The only thing that
remains is to discuss the use of some of the implementations of Verilog-A/MS. The
appendix presents many of the practical details that must be understood when using
simulators that support Verilog-A/MS.
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Compatibility

This appendix presents some of the practical details that you need to know to be able
to use Verilog-A/MS with the simulators available that support it. It starts by describ-
ing what constructs to avoid with purely digital models in order to retain compatibility
with traditional Verilog-HDL simulators. Then, the issues involved when using SPICE

models from Verilog-A/MS are discussed. Finally, it describes specifically how to use
Verilog-A and Verilog-AMS in the Cadence simulators: Spectre and AMS Designer.
Spectre was the first simulator to support Verilog-A. It is currently the most popular
simulator, and was used to validate each of the Verilog-A models contained in this
book. Similarly, AMS Designer was the first simulator to support Verilog-AMS, is
currently the most popular simulator that does so, and was used to validate each of the
Verilog-AMS models given in this book.

1 Verilog-HDL Compatibility
When describing purely digital modules, it is often desirable to completely avoid the
use of the AMS extensions so that the models can be read by a Verilog-HDL simula-
tor without modification. In these cases, one should consciously avoid the following
constructs.

1.

2.

3.

4.

8.

Explicit parameter type declarations

Parameter range limits

Analog declarations such as disciplines, natures, branches and ground.

Analog processes and the various things associated with them (contributions, ana-
log operators, limiting and stimulus functions, etc.)

Analog events, such as cross, timer, initial_step and final_step.

Analog functions

System functions and tasks that were added to support analog or mixed-signal
modeling, such as $abstime, analysis, $bound_step, $discontinuity, the $driver_…
functions, $limexp, the $rdist_… functions, $temperature, and $vt.

The wreal wire type

5.

6.
7.



Appendix A Compatibility

Connect modules and connect rules

SPICE is not a single language, but rather is a family of related languages. The first
widely used version of SPICE was SPICE2g6 from the University of California at Ber-
keley. However, SPICE has been enhanced and distributed by many different compa-
nies, each of which has added their own extensions to the language and the models.
As a result, there is a great deal of incompatibility even among the SPICE languages
themselves.

Verilog-A/MS makes no judgment as to which of the various SPICE languages should
be supported. Instead, it states that if a simulator that supports Verilog-A/MS is also
able to read SPICE netlists of a particular flavor, then certain objects defined in that
flavor of SPICE netlist can be referenced from within a Verilog-A/MS structural
description. In particular, SPICE models and subcircuits can be instantiated within a
Verilog-A/MS module. This is also true for most of the SPICE primitives that are built
into the simulator.
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2 SPICE Compatibility
At some point all circuit simulators such as SPICE will understand Verilog-A, all
device models will be available as Verilog-A modules, and model files and netlists
will be readily available in Verilog formats; but not today. Until that day, simulators
that support Verilog-A/MS must provide the ability to access SPICE primitives from a
Verilog description. This section describes how access to SPICE built-in primitives is
provided from the Verilog-A/MS language.

2.1 Scope of Compatibility

2.1.1 Degree of Incompatibility
There are four primary areas of incompatibility between versions of SPICE simulators.

1. The version of the SPICE language accepted by various simulators is different and
to some degree proprietary. This issue is not addressed by Verilog-A/MS. So
whether a particular Verilog-A/MS simulator is SPICE compatible, and with which
particular variant of SPICE it is compatible, is solely determined by the authors of
the simulator.

Not all SPICE simulators support the same set of component primitives. A particu-
lar SPICE netlist may reference a primitive that is unsupported within a given simu-
lator. Verilog-A/MS offers no alternative in this case other than the possibility that
if the model equations are known, the primitive can be rewritten as a module.
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If an implementation of a Verilog-A/MS tool supports SPICE compatibility, it is
expected to provide the basic set of SPICE primitives given in Section 2.3 and be able
to read SPICE netlists that contain models and subcircuit statements.

SPICE primitives built into the simulator are treated in the same manner in Verilog-A/
MS as built-in primitives. However, while the Verilog-A/MS built-in primitives are
standardized, the SPICE primitives are not. All aspects of SPICE primitives are imple-
mentation dependent.

In addition to SPICE primitives, it is also possible to access subcircuits and models
defined within SPICE netlists. The subcircuits and models contained within the SPICE

netlist are treated as module definitions.

237

3. The names of the built-in SPICE primitives, their parameters, or their ports can dif-
fer from simulator to simulator. This is particularly true because many primitives,
parameters, and ports are unnamed in SPICE. When instantiating SPICE primitives
in Verilog-A/MS, the primitives must, and parameters and ports can, be named.
Since there are no established standard names, there is a high likelihood of incom-
patibility cropping up in these names.

To avoid this, Verilog-A/MS defines a list of names that must be supported for
common SPICE primitives when made available within Verilog-A/MS. This list is
given in Table 1. However, it is not possible to anticipate all SPICE primitives and
parameters that could be supported; so different implementations can end up using
different names. This level of incompatibility can be overcome by using wrapper
modules to map names.

The mathematical description of the built-in primitives can differ. As with the net-
list syntax, incompatible enhancements of the models have crept in through the
years. Again, Verilog-A/MS offers no solution in this case other than the possibil-
ity that if the model equations are known, the primitive can be rewritten as a mod-
ule.

2.2 Accessing SPICE Objects from Verilog-A/MS

2.2.1 Case Sensitivity

SPICE netlists are case insensitive, whereas Verilog-A/MS descriptions are case sensi-
tive. From within Verilog-A/MS, a mixed-case name matches the same name with an
identical case as if it were defined in a Verilog description. However, if no exact
match is found, the mixed-case name will match the same name defined within SPICE

regardless of the case.

4.
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Unlike with SPICE, the first letter of the instance name, in this case Q1 and Q2, is not
constrained by the primitive type. For example, they can just as easily be T1 and T2.
The ports and parameters of the BJT are determined by the BJT primitive itself and
not by the model statement for the BJT. See Table 1 for more details. The BJT has 3
mandatory ports (collector, base, and emitter) and one optional port (the substrate). In
the instantiation of Q1, the ports are passed by order. With Q2, the ports are passed by
name. In both cases, the optional substrate port is defaulted by simply not giving it.

Accessing SPICE Subcircuits. As an example of how a SPICE subcircuit is refer-
enced from Verilog-A/MS, consider the following SPICE subcircuit definition of an
oscillator.
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2.2.2 Examples

Accessing SPICE models. Consider the following SPICE model file being read by a
Verilog-A/MS simulator.

module diffPair (c1, b1, e, b2, c2);
electrical c1, b1, e, b2, c2;

vertNPN Q1 (c1, b1, e, );
vertNPN Q2 (.c(c2), .b(b2), .e(e));

endmodule

.model vertnpn npn
+

bf=80 is=1e-18 rb=100 vaf=50
cje=3pf cjc=2pf cjs=2pf tf=0.3ns tr=6ns

This model can be instantiated in a Verilog-A/MS module as follows

.subckt ecposc (out gnd)
va vcc gnd 5
iee e gnd 1 ma
q1 vcc b1 e vcc vertnpn
q2 out b2 e out vertnpn
l1 vcc out 1uh
c1 vcc out 1p ic=1
c2 out b1 272.7pf
c3 b1 gnd 3nf
r1 b1 gnd 10k
c4 b2 gnd 3nf
r2 b2 gnd 10k

.ends ecposc

This oscillator can be referenced from Verilog-A/MS as:

module osc (out, gnd);
electrical out, gnd;
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Note that in Verilog-A/MS the name of the subcircuit instance is not constrained to
start with X as it is in SPICE.

Accessing SPICE Primitives. To show how various SPICE primitives can be
accessed from Verilog-A/MS, the subcircuit given above is translated to native Ver-
ilog-A/MS.

ecpOsc Osc1 (out, gnd);
endmodule

vsine #(.dc(5)) Vcc (vcc, gnd);
isine #(.dc(1m)) lee (e, gnd);
vertnpn Q1 (vcc, b1, e, vcc);
vertnpn Q2 (out, b2, e, out);
inductor #(.I(1u)) L1 (vcc, out);
capacitor #(.c(1p), .ic(1)) C1 (vcc, out);
capacitor #(.c(272.7p)) C2 (out, b1);
capacitor #(.c(3n)) C3 (b1, gnd);
resistor #(.r(10k)) R1 (b1, gnd);
capacitor #(.c(3n)) C4 (b2, gnd);
resistor #(.r(10k)) R2 (b2, gnd);

module ecpOsc (out, gnd);
electrical out, gnd;

endmodule

2.3 Preferred Primitive, Parameter and Port Names
Table 1 shows the required names for primitives, parameters, and ports that are other-
wise unnamed in SPICE. For connection by order instead of by name, the ports and
parameters are given in the order listed. The default discipline of the ports for these
primitives is electrical and their direction is inout.
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2.3.1 Unsupported Components

Verilog-A/MS does not support the concept of passing an instance name as a parame-
ter. As such, the following components are not supported: ccvs, cccs, and mutual
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inductors; however, these primitives can be instantiated inside a SPICE subcircuit that
itself is instantiated in Verilog-A/MS.

2.4 Other Issues
There are currently some important unresolved issues with SPICE compatibility in
Verilog-A/MS. It is expected that these issues will be resolved when extensions cur-
rently under development to support compact semiconductor models are added to the
language.

2.4.1 SPICE Model Statements

There is currently no Verilog-A/MS equivalent to the SPICE model statement. The
way a simulator accesses a library of SPICE models is implementation specific.

2.4.2 Multiplicity Factor on Subcircuits

SPICE simulators support a multiplicity factor (m) parameter on subcircuits without
the parameter being explicitly declared. This factor is typically used to indicate the
subcircuit should be modeled as if there are a specified number of copies wired in par-
allel. If supported by the implementation, the automatic multiplicity factors are sup-
ported for subcircuits defined in SPICE, but not for subcircuits defined as modules in
Verilog-A/MS. Thus, if the SPICE subcircuit given in Section 2.2 is instantiated, a
multiplicity factor could be specified (assuming the simulator implementation sup-
ports multiplicity factors on SPICE subcircuits). However, a multiplicity factor cannot
be specified when instantiating the equivalent Verilog-A/MS module, also given in
Section 2.2.

3 Spectre Compatibility
Spectre was the first simulator to support Verilog-A, and is still by far the most popu-
lar. It was also the simulator used to validate all of the Verilog-A models in this book.

3.1 Using Verilog-A with Spectre
When Spectre starts up, it reads either a Spectre or SPICE netlist. That netlist includes
the top-level of the design, along with the various control statements. Those control
statements specify the simulator settings and any analyses to be performed. In addi-
tion, the desired model and Verilog-A files would be referenced from this file.

When Spectre reads a reference to a Verilog-A file, it makes the components defined
within that file available to the design. In other words, referencing a Verilog-A file
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does not instantiate the components described in the file into the design. Rather, it
loads the components and makes them available for instantiation into the design.
Once a Verilog-A component has been loaded into Spectre, it can be instantiated in
the same manner as any other component. This is illustrated in the Spectre netlist
shown below.

Example:
// Test circuit for quantizer
simulator lang=spectre
ahdl_include “quantizer.va”

Vclk (clk 0) vsource type=pulse val1=1 period=1us
Vin (in 0) vsource type=sine ampl=1 freq=5kHz sinephase=45
Quantizer (out in clk) quantizer levels=21 vh=1 vl=–1 vth=0.5 tt=10ns

save in out Quantizer:level
sineResp tran stop=200uS

The first line in this file is a comment, as it must be, and the second specifies that the
Spectre netlist format is used in the file. The third line opens the Verilog-A file quan-
tizer.va and loads the model found in this file. It contains the module quantizer, shown
in Listing 1.

The next three lines instantiate the three components that
make up the design. Vin, Vclk, and Quantizer. Vin and
Vclk are Spectre primitive voltage sources and Quantizer
is the Verilog-A model from Listing 1. Within Spectre
and SPICE netlists, nodes are associated with ports by the
order in which they are given. Thus for the quantizer, the
nodes out, in, and clk are associated with the ports with the same names, but the fact
that the names match is a coincidence, it is the order that determines the association.
So the first node given is associated with the first port, and so on. Parameters are asso-
ciated by name, and any parameters that are left unspecified take their default values.

The final two lines are control statements for Spectre. The first specifies which signals
should be saved for later display or analysis. In this case, three signals are saved, in,
out and Quantizer:level. The signals in and out are nodes, and Spectre will save the
voltages on these nodes for each analysis. Quantizer:level saves the value of the vari-
able level from Quantizer for each analysis. This is a feature of Spectre that can be
used when debugging a module. The final statement specifies that a transient
analysis named sineResp should be run.

If this netlist is contained in a file named quantizer.scs (the .scs suffix stands for Spec-
tre circuit simulator), it can be run in Spectre using
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LISTING 1 N-level quantizer model (like an ADC followed by a DAC).

ìnclude "disciplines. vams"

module quantizer (out, in, clk);
parameter integer levels=2 from [2:inf);// number of quantization levels
parameter real vh = +1; // voltage of highest level (V)
parameter real vl = –1 from (–inf:vh); // voltage of lowest level (V)
parameter real vth = (vh + vl)/2; // threshold voltage of clock (V)
parameter integer dir = +1 from [–1:+1] exclude 0;

// if dir=+1, rising clock edge triggers
// if dir=–1, falling clock edge triggers

parameter real td = 0 from [0:inf); // output delay (s)
parameter real tt = 0 from [0:inf); // output transition time (s)
output out; voltage out; // output
input in; voltage in; // input
input clk; voltage clk; // clock input (edge triggered)
real quantized, delta;
integer level;

analog begin
@(cross(V(clk) – vth, dir) or initial_step) begin

delta = (vh–vl)/(levels–1);
level = (V(in) – vl)/delta;
if (level < 0)

level = 0;
else if (level >= levels)

level = levels – 1;
quantized = level * delta + vl;

end
V(out) <+ transition( quantized, td, tt );

end
endmodule

spectre quantizer.scs

from a Unix shell. More information about using Spectre can be found in [19].

Busses. Verilog-A allows busses as ports but the Spectre netlist language does not
support busses. When instantiating a Verilog-A model that includes a bus as a port
from within a Spectre netlist, each member of the bus must be individually listed in
the terminal list. As an example, consider a netlist that instantiates the ADC and DAC
given in Listings 26 and 27 from Chapter 3.
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Example:
// Test ADC and DAC models
simulator lang=spectre

ahdl_include “adc2.vams”
ahdl_include “dac2.vams”

Vin (in 0) vsource type=sine ampl=0.5 dc=0.5 freq=1
Vclk (clk 0) vsource type=pulse val0=0 val1=1 period=1ms
ADC (b7 b6 b5 b4 b3 b2 b1 b0 in clk) adc bits=8 vdd=1 td=100us tt=100us
DAC (out b7 b6 b5 b4 b3 b2 b1 b0 clk) dac bits=8 vdd=1 td=100us tt=100us

sineResp tran stop=1

Here the 8-bit bus that connects the output of the ADC to the input of the DAC con-
sists of 8 nodes, b0 to b7, that are individually specified on the terminal list for both
the ADC and DAC.

3.2 Accessing Spectre Objects from Verilog-A
In the last section, it was shown how to access Verilog-A models from a Spectre net-
list. The converse is also possible; one can access Spectre primitives, subcircuits, and
models from a Verilog-A netlist. This process was sketched out for SPICE in Section 2.
Some of the details are a bit different with Spectre as it provides access to a broader
variety of components and because the way Spectre implements its independent
sources is a bit different from SPICE.

Any Spectre objects that are to be instantiated in a Verilog-A netlist must be defined,
either in the Spectre netlist, or in the Spectre simulator itself, before they can be
instantiated in a Verilog-A module.

There is no way to specify a model statement or model parameters (as opposed to
instance parameters) from within the Verilog-A language. However, it is possible to
instantiate an instance that references a model from within Verilog-A. For example
the Spectre model

model vertNPN bjt type=npn bf=80 is=1e-18 rb=100 vaf=50 \
cje=3pf cjc=2pf cjs=2pf tf=0.3ns tr=6ns

can be instantiated in a Verilog-A/MS module as follows

module diffPair (c1, b1, e, b2, c2);
electrical c1, b1, e, b2, c2;
parameter real area=1 from (0:inf);
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vertNPN Q1 (c1, b1, e,);
vertNPN Q2 (.c(c2), .b(b2), .e(e));

endmodule

One thing to take notice of is that by default the Spectre netlist language is case sensi-
tive, thus when referring to a name defined in the Spectre netlist from a Verilog net-
list, the case of the characters used in the name must match between the two
languages.

In a very similar manner, one can access subcircuits defined in a Spectre netlist from
Verilog. Consider the above module implemented as a Spectre subcircuit.

subckt diffPair (c1, b1, e, b2, c2)
parameter area=1

Q1 (c1 b1 e) vertNPN area=area;
Q2 (c2 b2 e) vertNPN area=area;

ends diffPair

This subcircuit can be instantiated in a Verilog-A netlist using

diffPair #(.area(10)) DP1(o1, i1, tail, i2, o2);

Notice that you can specify values for Spectre subcircuit parameters.

Finally, any Spectre built-in components that use only real-valued, string-valued, or
vector-valued parameters can be accessed from Verilog-A. This precludes direct use
of current controlled and mutual inductors, but they can be used if bundled in subcir-
cuits. The names used for the ports (terminals) and parameters can be determined by
using Spectre’s help facility. For example, to find the names needed to instantiate
Spectre’s multi-conductor lossy transmission line, run

spectre -help mtline

at the Unix command prompt. It will describe the mtline component, and the descrip-
tion will give the names of the ports and parameters. From Verilog-A, the mtline can
be instantiated with

mtline #(.len(0.01), .r({0.3,0.0,0.3}), .c((0.35p, -0.03p, 0.35p})) x1 (a1, b1, a2, b2, gnd, gnd);

Spectre provides access to its independent sources in a manner somewhat different
from that described in Section 2.3. Rather than encoding the wave shape in the name
of the primitive, Spectre bases the name of the primitive only on the type of source,
and adds an additional parameter that specifies the wave shape. For example,
Section 2.3 indicates that instantiating a sinusoidal voltage source from SPICE would
be done as follows,

vsine #(.ampl(1), .freq(1G)) Vin (in, gnd);
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but with Spectre you would use

vsource #(.type(“sine”), .ampl(1), .freq(1G)) Vin (in, gnd);

The benefit of this approach is that the wave shape itself is parameterized. It is possi-
ble to give the parameters for multiple wave shapes, and then select which wave shape
to use with the type parameter. The list of Spectre source parameters is given in
Table 2.
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3.3 Spectre’s Implementation of Verilog-A
Currently Spectre supports a somewhat restricted version of the Verilog-A language.
In particular, the following limitations exist in the Spectre implementation.

1.

2.

3.

4.

5.

6.

7.

8.

9.

When instantiating modules, parameter values can only be passed by name and not
by order. Furthermore, nets can only be associated with ports by order, not by
name.

The genvar type of integers is not supported. Nor are analog operators allowed in
for loops. Instead the deprecated generate statement remains available and should
be used when analog operators must be contained within a loop.

The ground statement is not supported. You should pass in ground as a terminal.

Argument and port lists cannot contain skipped arguments.

Using parameter values as array sizes is not allowed.

It is not possible to pass strings as parameters into a Verilog-A module.

When declaring vector ports, array bounds must be given on both type and direc-
tion declarations.

The delay and zi_… functions do not work in any small-signal frequency-domain
analyses.

The small signal stimulus functions cannot be used in assignment statements or in
expressions. They must instead be isolated in a contribution statement. So, rather
than scaling the output of the noise functions, you should specify the desired out-
put power using the primary operand of the functions. For example, consider mod-
eling oscillator phase noise for use with SpectreRF. Assume that ampl, freq, and
pn are parameters and that phase is a real variable set such that

phase = 2*`M_PI*freq*$abstime;

Then the simplest way of modeling phase noise is to simply add noise to the argu-
ment used to convert phase to voltage, in this case cos().
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V(out) <+ ampl*cos(phase + flicker_noise(pn,2));

But this is not supported as the flicker_noise function is not isolated on the contri-
bution statement. Since the flicker_noise output is by definition small, it can be
removed from the argument of the cos() function by using the Taylor series to
expand the function into a power series and then truncating the higher order terms.
This naturally leads to something like

V(out) <+ ampl*(cos(phase) + sin(phase)*flicker_noise(pn,2));

However, even this is not supported as the output of the flicker_noise function is
being further processed before it reaches the contribution operator. Instead, both
factors that are applied to the flicker_noise function must be applied directly to the
operand.

V(out) <+ ampl*cos(phase) + flicker_noise(pn*ampl*sin(phase),2);

This is acceptable even though the flicker_noise function is not alone in the contri-
bution statement because it is isolated.

10. The output of the derivative operator, ddt, must have linear accessibility to a
branch. Meaning that its output can be directly contributed to a branch, or it can be
scaled by a constant factor, but it cannot be multiplied by a signal dependent quan-
tity or passed through a nonlinear operator before being contributed to a branch.
So for example,

l(p,n) <+ ddt(c*V(p,n));

l(p,n)<+c*ddt(V(p,n));

icap = c*ddt(V(p,n));
l(p,n) <+ V(p,n)/r + icap;

are all acceptable, but

l(p,n)<+c0*(1+c1*(V(p,n)–v0))*ddt(V(p,n));
is not because the output of the ddt operator is being multiplied by a quantity that
is dependent on the value of a continuous-time signal. To avoid this problem the
model must either be reformulated [20] or a node must be created internal to the
model to hold the output of the ddt operator. Then the nonlinear operation would
be performed on the value of the node rather than directly on the output of the ddt
operator.

4 AMS Designer Compatibility
Cadence’s AMS Designer is both a simulator and an environment. The simulator
implements the full Verilog-AMS language and was used to validate the mixed-signal
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models provided in this book. The environment is the interface between the Cadence
Design Framework II (DFII) and the simulator. It is used to netlist schematics into
Verilog-AMS format, to create the design configurations, and to run the simulator.
The Verilog-AMS language is the primary design language within AMS designer;
meaning that it is used for both netlisting and as the modeling language. In addition,
AMS Designer is a multilingual simulator that also supports VHDL-AMS, SystemC,
SystemVerilog, and Spectre and SPICE netlists.

The following describes how the examples in this book can be used with the simulator
by providing necessary instruction on how to set-up an AMS simulation. Basic
instructions are given for using the AMS Designer simulator in a stand-alone mode.
The product documentation available from Cadence provides complete and detailed
help on how to use the simulator as well as instruction on how to use the AMS
Designer environment.

4.1 Using Verilog-AMS with AMS Designer
The AMS Designer simulator is built upon NC-SIM technology. Both share a common
library concept and format.

4.1.1 General Setup

To use a Verilog-AMS model it must be compiled into one of the libraries defined in
the cds.lib file (see Listing 2) located in the working directory. In this file, ‘#’ is used
to introduce a comment: anything that follows up until the end of the line is ignored.
The file consists of commands, one per line. The include command is replaced by the
contents of the file it references. In this case, it includes the contents of the cds.lib file
that comes with the simulator installation. This file references the libraries that are
delivered with the simulator. An example of such a library is connectLib, which con-
tains definitions of various interface components with different accuracy levels. The
‘$’ introduces a Unix environment variable substitution. In this case, AMSHOME
would contain the full path to the installation directory for the AMS Designer simula-
tor. The define command declares that the Unix directory worklib in the working
directory shall be used as the library directory for the library with the name worklib.

LISTING 2 Sample cds.lib file

# cds.lib
include $AMSHOME/tools/inca/files/cds.lib
define worklib ./worklib
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Another important setup file is hdl.var. Place tool options that are often used into this
file rather than specifying them on the command line every time a model file is com-
piled or a design is elaborated. Listing 3 shows an example hdl.var file. The include
statement incorporates the default simulator settings. The first define statement
declares that the name worklib, which was declared within the cds.lib file, is defined
as the working library. WORK is a keyword, worklib is the name of the existing
library. This causes models to be compiled into this library if no other target library is
specified as a command line argument during compilation. The second define state-
ment causes the compiler to write information into the library necessary for source
code debugging.

LISTING 3 Sample hdl.var file

# hdl.var
include $AMSHOME/tools/inca/files/hdl.var
define WORK worklib
define NCVLOGOPTS -linedebug

4.1.2 Compilation

Assume that the cds.lib and hdl.var files given above are found in a directory that con-
tains the Verilog-AMS model vco.vams. From within this directory, this model can be
compiled using

ncvlog -ams vco.vams

or in case the working library is not preset or it should be compiled into a library other
than the default working library

ncvlog -ams -work worklib vco.vams

The command line argument “-ams” is necessary to compile Verilog-AMS models.
Compilation without this argument compiles Verilog-HDL models only. When com-
piling several source files the order in which they are compiled is arbitrary. If there are
syntax errors, ncvlog will print error messages that direct you to the point in the file
where the error was detected. For a quick command line reference you can use

ncvlog -help

An example PLL-design is shown in Listing 4; it references modules defined in List-
ings 5-8. Every module is written into a separate file in the working library. The
design is compiled with the compilation script shown in Listing 9. The phase-fre-
quency detector module (pfd) and the frequency divider module (fd) are compiled
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without the -ams switch. These modules are purely digital and written in Verilog-
HDL.

LISTING 4 The top-level module of the PLL example (from file plltop. vams).

`include “disciplines. vams”
`timescale 10ps / 1ps

module plltop ();
electrical gnd;
ground gnd;
reg ref, reset;

initial begin
ref = 0;
reset = 1;
#100 reset = 0;

end

always #3333 ref = ~ref; // 15MHz

pfd PFD (.reset( reset), .qinc(up), .active(fb), .ref(ref), .qdec(dwn));
cp #(.cur(1m)) CP (.nout(gnd), .dec(dwn), .inc(up), .pout(err));
capacitor #(.c(30n)) C (err, err2);
resistor #(.r(200)) R (err2, gnd);
vco #(.f0(1.5E9), .kvco(50.0E6), .rin(100k)) VCO (.ps(err), .ns(gnd), .out(out));
fd FD (.reset(reset), .out(fb), .clk(out));

endmodule

4.1.3 Elaboration

During the elaboration step all models that are used in the design are linked together.
The hierarchy of the design is built. Before starting the elaborator, it is necessary to
compile all models that will be used. Then the elaborator can be invoked with

ncelab plltop -discipline logic -timescale 10ps/1ps

where plltop is the name of the top level module in the design. The elaborator finds
the names of the instantiated modules within the compiled plltop module. It runs the
discipline resolution and the connect module insertion algorithms. The -discipline
command line option is used to define the default discipline. Defining it as logic
allows the use of Verilog-HDL modules, like the pfd and fd modules, to be used with-
out adding a discipline declaration for the logic signals to the module source code.
The -timescale attribute assigns the time unit and time precision information to mod-
ules that do not have ‘timescale directives.
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LISTING 5 The phase-frequency detector (from file pfd.v).

`timescale 10ps / 1ps

module pfd (qinc, qdec, active, ref, reset);
output qinc, qdec;
input reset, active, ref;
wire fv_rst, fr_rst;
reg q0, q1;

assign fr_rst = reset | (q0 & q1);
assign fv_rst = reset | (q0 & q1);

always @ (posedge active or posedge fv_rst) begin
if (fv_rst) q0 <= 0; else q0 <= 1;

end

always @ (posedge ref or posedge fr_rst) begin
if (fr_rst) q1 <= 0; else q1 <= 1;

end

assign qinc = q1;
assign qdec = q0;

endmodule

Invoking the elaborator with the above command line options applies the default basic
mixed signal discipline resolution mechanism. If the detailed discipline resolution
mechanism is desired, the command line switch -dresolution must be added.

More information about the steps taken during the elaboration process is displayed if
the -messages command line switch is added to the command line.

4.1.4 Simulation

The simulation can be run in batch mode, in TCL command mode or using the graph-
ical user interface (GUI). In the TCL and GUI modes the user can interactively com-
municate with the simulator. To simulate the PLL example design in GUI mode the
simulator is invoked with

ncsim plltop -analogcontrol plltop.scs -gui

To start the simulator in TCL command mode, the -tcl command line option is used
instead of -gui. The simulator starts in batch mode if neither of these two command
line options is present. When running in batch mode it is possible to control the simu-
lation with a TCL control script that might contain, among other instructions, signal
probe commands for later viewing of the result waveforms. The TCL control script
can be referenced using the -input command line option:
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LISTING 6 The charge pump (from file cp.vams).

`include “disciplines. vams”
`timescale 10ps / 1ps

module cp (pout, nout, inc, dec);
parameter real cur = 1m; // output current (A)
input inc, dec;
electrical pout, nout;
real out;

analog begin
@(initial_step) out = 0.0;

if (dec && !inc)
out = –cur;

else if (!dec && inc)
out = cur;

else out = 0;

l(pout, nout) <+ -transition(out, 0.0, 10n, 10n);
end

endmodule

ncsim plltop -analogcontrol plltop.scs -input control.tcl

The file plltop.scs is the control file for the analog simulation engine. In the simplest
case this file would contain a transient analysis statement

transient tran stop=1ms

which defines the stop time for this simulation run.

Starting the PLL example in GUI mode will invoke the SimVision simulation control
and debug environment. In the Design Browser window select the signals you want to
probe, then hit the “Send To Waveform ” icon at the right side of the icon bar. The
SimVision waveform window opens and shows the still empty waveforms for the
selected signals. Now, in the waveform window hit the “Run Simulation” icon (white
arrow on black). The simulation will run up to the stop time defined in the transient
statement within the analog control file. But at any time the user may pause the simu-
lation and continue or forward it step by step for debug purposes. The Cadence prod-
uct documentation provides details about the features used to debug a model.

4.1.5 Automatic Interface Component Insertion
The PLL example presented above does not require interface component insertion
because the disciplines of the interconnecting wires match. Now lets assume we want
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LISTING 7 The frequency divider (from file fd. v).

`timescale 10ps/ 1ps

module fd (out, clk, reset);
input clk, reset;
output out;
wire out;
reg q;
integer i;

always @ (negedge reset) begin
i = 0;
q = 0;

end

always @(posedge clk) begin
if (~reset) begin

i = i + 1;
if (i == 63) begin

q = ~q;
i = 0;

end
end

end

assign out = q & ~reset;
endmodule

to use an analog sine wave signal as the PLL reference clock instead of the digital
oscillating signal ref. Listing 10 shows the changed top level netlist. A sine wave volt-
age source (V1) generates the analog signal ref. This analog signal is connected to the
ref input of the phase-frequency detector (PFD), which is modeled completely in Ver-
ilog-HDL and so has a digital input. Obviously a mixed-signal interface component is
necessary in this case.

A library with connect modules and corresponding connect rule definitions is pro-
vided with the AMS Designer simulator. The user chooses one of the connect rule
definitions and references them when invoking the elaborator. With mixedsignal_2 as
the chosen connect rule definition, the elaboration command line changes to

ncelab plltop mixedsignal_2 -discipline logic -timescale 10ps/1ps

The additional elaborator command line option -iereport displays information about
the inserted connect modules. The Verilog-AMS language also provides users with
the ability to create their own connect modules. If those should be used instead of the
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LISTING 8 The VCO (from file vco.vams).

`include “disciplines. vams”
`timescale 1ns/ 1ps

module vco (out, ps, ns);
parameter real f0 = 100k;
parameter real kvco = 10k;
parameter real rin= 100k from (0:inf);
output out;
electrical ps, ns;
reg out;
logic out;
real vin;

initial out = 0;

always begin
vin = V(ps, ns);
#(0.5e9 / (f0 + kvco * vin))
out = ~out;

end

analog l(ps, ns) <+ V(ps,ns)/rin;
endmodule

// center frequency (Hz)
// gain (Hz/V)
// input resistance (Ohms)

LISTING 9 Compilation script (from file compile. sh).

ncvlog -ams cp.vams
ncvlog -ams vco.vams
ncvlog pfd.v
ncvlog fd.v
ncvlog -ams plltop.vams

provided connect modules, they must be compiled into a library. This library has to be
defined in cds.lib

define my_connectlib ./my_connectlib

and the library directory, in this case ./my_connectlib must exist. The connect mod-
ules as well as the connect rules block are compiled with

ncvlog -ams -work my_connectlib my_connectmodules.vams
ncvlog -ams -work my_connectlib my_rules.vams

The name of the connect rules must be specified in the elaboration command line
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LISTING 10 PLL top level netlist with an analog reference clock.

`include "disciplines. vams"
`timescale 10ps/ 1ps

module plltop ();
electrical gnd;
ground gnd;
reg reset;

initial begin
reset = 1;
#100
reset = 0;

end

vsource #(.type("sine"), .ampl(2.5), .dc(2.5), .freq(15M)) Vin (ref, gnd);
pfd PFD (.reset(reset), .qinc(up), .active(fb), .ref(ref), .qdec(dwn));
cp #(.cur(1m)) CP (.nout(gnd), .dec(dwn), .inc(up), .pout(err));
capacitor #(.c(30n)) C (err, err2);
resistor #(.r(200)) R (err2, gnd);
vco#(.f0(1.5E9), .kvco(50.0E6), .rin(100k)) VCO (.ps(err), .ns(gnd), .out(out));
fd FD (.reset(reset), .out(fb), .clk(out));

endmodule

ncelab plltop my_rules -discipline logic -timescale 10ps/1ps

4.1.6 Design Configuration

Design configuration enables the easy use of modules with different abstraction lev-
els. Besides the behavioral version of the VCO model given above, there might be
another one, also named vco, that includes a transistor level description. How does the
tool select which one to use for simulation?

There are two different ways for configuring the design. When the AMS Designer
environment is used, a configuration file for the design is generated and fed into the
simulator. When running the simulator from the command line this file could be cre-
ated manually. However there is a second possibility that is easier to use when work-
ing on the command line: binding. Using this method the elaborator identifies the
right module implementation based on the name of the library the module is compiled
into and the name of a view. This means the two differently described VCOs could be
in different libraries, or they could be even in the same library but with different view
names. Design configurations are applied during the elaboration step. However, dur-
ing compilation of the modules the library and the view have to be specified. The
compilation with
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ncvlog -ams -work libA -view behavioral vco.vams

puts the compiled module into the library libA and assigns the view name behavioral
to it. Another VCO with the same module name could be compiled into the same
library under a different view name, for example schematic. The elaboration com-
mand

ncelab plltop -binding libA.vco:behavioral

specifies exactly which module implementation to use. If there are several plltop
modules available, library and view can be specified for the top level module:

ncelab libA.plltop:detailed

In this case the view was named detailed. When there are several top level modules
with the same name, the desired one needs to be specified on the simulator command
line as well:

ncsim libA.plltop:detailed -analogcontrol plltop.scs -gui

4.2 Referencing SPICE

SPICE as well as Spectre primitives and subcircuits can be instantiated within Verilog-
AMS modules as described earlier in this appendix. Simulator built-in primitives are
found automatically during the design elaboration. However, the location of SPICE or
Spectre model statements and subcircuit definitions must be specified. This can be
done in the hdl.var file using the MODELPATH declaration:

define MODELPATH <unix_path_to_netlist>

or on the elaborator command line with the command line attribute

-modelpath <unix_path_to_netlist>

4.3 Referencing VHDL-AMS
The AMS Designer simulator supports VHDL-AMS as an additional mixed signal
modeling language. VHDL-AMS models can be instantiated in Verilog-AMS netlists
like any Verilog-AMS module. Before the design elaboration step VHDL-AMS mod-
els (entity and architecture) must be compiled. For a model in a file named vco.vhd
one would use:

ncvhdl -ams vco.vhd

Both Verilog-AMS and VHDL-AMS can be compiled into the same library. For disci-
pline resolution and automatic interface component insertion at the mixed language
boundary, the electrical Verilog-AMS discipline is compatible with the VHDL-AMS
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electrical nature, and the logic discipline is compatible with std_logic in VHDL-
AMS. Automatic interface component insertion at the language boundary follows
Verilog-AMS rules.
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Symbols
! (negation) 174
!= (inequality) 174
!== (not identical) 174
# delay 166, 216

not in analog process 196
$abstime 83, 175
$bound_step 77, 190
$discontinuity 69, 79, 80, 191
$display 192
$driver_... functions 144, 145
$fclose 193
$fdisplay 193
$finish 191
$fopen 193
$fstrobe 194
$limexp 57, 188
$monitor 193
$random 194
$rdist_... functions 194
$realtime 176
$stop 191
$strobe 84, 192
$temperature 57, 177
$vt 57, 177
$write 193
% (modulus) 173
& (bitwise and) 173
&& (logical and) 174
(—§—p—) (cross reference) 35
* (multiplication) 173
+ (addition) 173
.model 238, 241, 244
.subckt 238, 245
/ (division) 173
< (less than) 174
<< (shift left) 174
<= (less than or equal to) 174

== (equality) 174
== = (identical) 174
> (greater than) 174
–> (trigger named event) 174, 217
>= (greater than or equal to) 174
>> (shift right) 174
?: (inline conditional) 174, 200
@ event 216

different in analog process 196
restrictions 178

^ (bitwise exclusive or) 173
^~ (bitwise exclusive nor) 173
_ (in numbers) 153
_ _VAMS_ENABLE_ _ 151
{,} concatenate and replicate 154
| (bitwise or) 173
|| (logical or) 174
~ (bitwise invert) 173
~& (bitwise nand) 173
~^ (bitwise exclusive nor) 173
~| (bitwise nor) 173
‘default_transition 80, 180
‘define 151
‘ifdef 151
‘include 36, 151
‘M_... (math constant) 65, 153
‘P_... (physical constant) 65, 153
‘resetall 152
‘timescale 152
‘undef 151
’b binary constant 153
’d decimal constant 153
’h hexadecimal constant 153
’o octal constant 153

A
a (atto) 154
above event 120, 207

restrictions 178
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absdelay filter 181
absolute tolerance (abstol) 52, 72, 95, 159,

162, 168
abstime function 83, 175
AC analysis 66, 177, 189
ac_stim stimulus 66, 189
Acceleration nature 159
access function 38, 52, 159, 168
access on demand

analog values in discrete process 118, 225
discrete values in analog process 115, 223

ADC model 84, 118
always process 103, 209
AMS Designer ix, x

compatibility 248–258
analog event 67, 72, 78, 204

restrictions 178
analog functions 204
analog operators 177

restrictions 177, 178
analog process 38, 196

accessing discrete values 115, 223
sensitive to discrete events 115, 225
variable capture 57, 114, 198, 223
versus event-driven processes 199

analog to digital connect module 131
analog to digital converter model 84, 118
analysis

AC 66, 189
noise 66, 189
small signal 65
transient 242

analysis function 175
angle natures 159
arithmetic operators 173
array 157

bit select 105, 157, 166
branch 167
constants 154
instance 229
net 164
part select 157, 166
port 84, 166
see bus

assignment 59, 198
blocking 107, 213
continuous 102, 213

delayed 109, 219

contribution 38, 60, 169, 198
delayed 107, 218

continuous 109, 219
discrete event 212
indirect 170, 172

multiple 171
net 214
non-blocking 108, 213
procedural 212, 213

continuous 214
register 212, 214
wreal 111

associated reference directions 50
autonomous events 78, 206

B
barrier model 71
base nature 53
begin-end block 106, 196, 209
behavioral description 227
behavioral module 45
bi-directional connect module 135
binary constant 153
bit select 105, 157, 166
bit stream generator model 206
bit variable 103, 156
bitwise operators 173
block

concurrent 106, 211
disable 210
named 197, 210
parallel, see concurrent block
procedural 106, 196, 209
sequential, see procedural block

blocking assignment 107, 213
bottom-up design methodology 17
bottom-up verification 28
bound_step function 77, 190
branch 47, 167

declaration 56, 167
named or explicit 56, 167
port 168
probe 61
signal access 168
source 62
switch 62
unnamed or implicit 38, 167
vector 167
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breakdown warning model 208
bus 84, 102, 105, 165, 229

bit select 105, 157, 166
part select 157, 166

C
capacitor model 39
captured variable 57, 114, 198, 223
case sensitivity 149

Spectre 245
SPICE 237

case statement 201
charge conservation 54
Charge nature 159
circular integrator 75, 179
clock model 103, 209
comment 36, 149
compact model 9
comparator model 121, 226, 227
compatibility

AMS Designer 248–258
Spectre 241–247
SPICE 236–241
Verilog-HDL 235

component 46
concatenate operator 106, 154
concurrent block 106, 211
conditional

case statement 201
if-else statement 68, 200
inline 174, 200

conductor model 39
configuration 256
connect module 131–145

analog to digital 131
automatic insertion 128, 253
bi-directional 135
digital to analog 135

connect statement 125, 129, 163
connectrules 125, 129, 163
conservative

discipline 160
system 46

constant 152
expression 172
integer 152
logic 152
mathematical 155

physical 155
real 153
strings 154
vector 154

constants.vams file 65, 153
continuous assignment 102, 213

delayed 109, 219
wreal 111

continuous domain 160
continuous-time kernel 196
contribution statement 38, 60, 169, 198

and indirect assignment 172
and simultaneous solution 199
restrictions 178

counter model 109, 210, 211
cross event 67, 72, 206

restrictions 178
tolerance 81

current discipline 161
Current nature 159
current source model 41
current, see flow

D
d flip flop model 104, 207, 214, 217
DAC model 87, 111, 223, 224
DC analysis 177
ddt operator 40, 179

restrictions 178
ddt_nature 96
decade counter model 210
decimal constant 153
define statement 151
defparam statement 233
delay

# 103, 166, 216
not allowed in analog process 196

@ 104, 216
analog (absdelay) 181
gate 230
inter-assignment 107, 218
net 166
wait 105, 218

not allowed in analog process 196
delay function (absdelay) 181
delay measurement model 80
derivative (ddt) 40, 179
derived nature 53
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design 2
design methodology

bottom up 17
primitive top down 17
rigorous top down 24
top down design principles 19

difference equations 187
digital functions 221
digital signal 3
digital to analog connect module 135
digital to analog converter model 87, 111,

223, 224
diode

ideal 73
junction 54

disable statement 210
discipline 36, 51, 100, 160

resolution 123–128
basic 124
compatible disciplines 124, 162
detailed 127
specifying 252

disciplines.vams file 37, 159
discontinuity function 69, 79, 80, 191
discrete domain 160
discrete process

accessing analog values 118, 225
sensitive to analog events 119, 225
variable capture 114, 223

discrete-event kernel 209
discrete-event signal 3
display function 192
distributions, random 194
domain 160
driver/receiver segregation 137
driver_... functions 144, 145

E
e (exponent) 154
edge triggered 67, 80, 104, 217
electrical discipline 161
elements of style 96
environment functions 175
equality operators 174
escaped identifiers 149
event

above 120, 207
analog 67, 72, 78, 204

in discrete process 119, 225
restrictions 178

cross 67, 72, 81, 206
delayed assignment 107, 218
different in analog process 196
discrete 216

in analog process 115, 225
expression 217
final_step 83, 205
initial_step 78, 92, 205
named 217
restrictions 83
timer 78, 206

exclude keyword 55, 158
executable specification 23
explicit branch 56
expression 172

F
f (fempto) 154
fclose function 193
fdisplay function 193
file

constants.vams 153
disciplines.vams 159

file inclusion 36, 151
filter 177

absdelay 181
ddt 40, 179
idt 179
idtmod 75, 179
laplace 92, 182
restrictions 83, 177
sampled data 184
slew 181
transition 79, 180
z 184

final verification 29
final_step event 83, 205
finish function 191
finite-state machines 2, 13
FIR filter 187
fixed-point formulation 169
flicker_noise stimulus 66, 189
flow 47, 161, 168

probe 61
source 62

Flux nature 159
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fopen function 193
for loop 93, 202
Force nature 159
forever loop 220
fork-join block 106, 211
formal specification 23
frequency measurement model 110
from keyword 55, 158
fstrobe function 194
function

$abstime 83, 175
$bound_step 77, 190
$discontinuity 69, 79, 80, 191
$display 192
$driver_... 144, 145
$fclose 193
$fdisplay 193
$finish 191
$fopen 193
$fstrobe 194
$limexp 57, 188
$monitor 193
$random 194
$rdist_... 194
$realtime 176
$stop 191
$strobe 84, 192
$temperature 57, 177
$vt 57, 177
$write 193
above 120, 207
absdelay 181
ac_stim 66, 189
analog 204
analysis 175
cross 67, 72, 81, 206
ddt 40, 179
digital 221
environment 175
final_step 83, 205
flicker_noise 66, 189
idt 63, 179
idtmod 75, 179
initial_step 78, 92, 205
laplace_... 92, 182
last_crossing 81, 188
logical 175
mathematical 172, 175

noise_table 66, 189
restrictions 83
slew 181
timer 78, 206
transition 79, 180
user defined 190

analog 204
digital 221

versus task 220
white_noise 66, 189
zi_... 184

G
G (giga) 154
gate-level descriptions 229
generate loop 203
genvar 84

expression 178, 201, 203
restricted for loop 84
variables 157

ground 49
statement 43, 166

H
hardware description language 1
hexadecimal constant 153
hierarchical name 72, 232

discipline 124

I
IC analysis 177
ideal diode model 73
ideal opamp model 171
identifier 149
identity operators 174
idt operator 63, 179

restrictions 178
idt_nature 96
idtmod operator 75, 179

restrictions 178
ifdef statement 151
if-else statement 68, 200
IIR filter 187
implicit branch 38, 167
implicit formulation 59, 169
Impulse nature 159
include statement 36, 151
index, vector 105, 157
indirect assignment 170
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and contribution 172
multiple 171

inductor model 40
lossy 88

initial process 103, 209
initial_step event 78, 92, 205
inout statement 37, 164
input statement 37, 164
instantiation 43, 227
integer

constants 152
variables 156

integral (idt) 179
integral (idtmod) 75, 179
inter-assignment delay 107, 218
interface component 99, 131–145

automatic insertion 128, 253
interval measurement model 80
inverter model 100
IP reuse 31
iterator 202, 220

J
join-fork block 106, 211
junction diode model 54

K
k (kilo) 154
kernel 5

continuous-time 196
discrete-event 209

keywords 150
kinematic disciplines 161
Kirchhoff’s laws 47, 95

L
laplace filters 92, 182

restrictions  178
last_crossing function 81, 188

restrictions  178
latch model 105, 230
level triggered 105, 218
limexp function 57, 188

restrictions 179
logic

constants 152
discipline 100, 161
functions 175
operators 174

values 102, 156
variables 103, 156

loop 202, 220
analog operator restrictions 178
for 93, 202
forever 220
generate 203
genvar 84
repeat and while 202

lossy inductor 88
lossy transmission line 245

M
M (mega) 154
m (milli) 154
M_... (math constant) 65, 153
macro 151
macromodule 226
magnetic discipline 161
Magneto_Motive_Force nature 159
mathematical constants 155
mathematical functions 172, 175
mechanical stop model 71
methodology

bottom-up design 17
primitive top-down design 17
principles of top-down design 19
rigorous top-down design 24

mixed-level simulation 21, 27
mixed-signal

behavior 111
netlist 121–145
simulators 5

model
ADC 84, 118
barrier 71
bit stream generator 206
breakdown warning 208
capacitor 39
clock 103, 209
comparator 121, 226, 227
conductor 39
connect module

analog to digital 131
bi-directional 141, 146
digital to analog 135

counter 109, 210, 211
d flip flop 104, 207, 214, 217
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DAC 87, 111, 223, 224
frequency measurement 110
ideal diode 73
ideal opamp 171
independent source 41
inductor 40

lossy 88
inverter 100
junction diode 54
latch 105, 230
mechanical stop 71
motor 50
port 65
quantizer 243
relay 67, 115
resistor 35
RLC 63
sample and hold 77, 225
skin effect 88
Spectre 244, 257
SPICE 238, 241, 244, 257
structural 41–50, 121–145, 226–233
switch (controlled) 67, 115
time interval measurement 80
tristate buffer 224
VCO 73, 118

delay 166
rules of use vs. resisters 215
signal access 168
types 165
vector 164
versus node 162

netlist 41–50, 121–145, 226–233
definition 45

node 47, 164
versus net 162

nodeset analysis 177
noise analysis 66, 177, 189
noise_table stimulus 66, 189
non-blocking assignment 108, 213
number 152

O
octal constant 153
OOMR 233

discipline 124
opamp, ideal 171
operator 172

analog 177
concatenate 106, 154
ddt 40, 179
idt 63, 179
idtmod 75, 179
replicate 154
restrictions 83, 177

out of module reference (OOMR) 233
discipline 124

output statement 37, 164
override, absolute tolerance (abstol) 159

P
p (pico) 154
P_... (physical constant) 65, 153
parallel block, see concurrent block
parameter 37, 55, 75, 157, 228
part select 157, 166
physical constants 155
pin, see port
plan, verification and modeling 22, 24
port 37, 46, 164, 228

branch 168
direction 37, 164
model 65
signal access 168
vector 84, 166
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modeling style 96
module 37, 226

SPICE 239
monitor function 193
motor model 50
multiple indirect assignment 171
multiple instantiation 229
multiplicity factor 241

N
n (nano) 154
name, hierarchical 232

discipline 124
named block 197, 210
named branch 56, 167
named event 217
names, SPICE 239
nature 36, 51, 95, 159
negedge 105, 217
net 164

assignment 214
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posedge 105, 217
Position nature 159
potential 47, 161, 168

probe 61
source 62

primitive
Spectre 244, 257
SPICE 239, 257

probe branch 61
procedural assignment 212
procedural block 106, 196, 209
procedural continuous assignment 214
process 38, 103, 196, 209

analog 38, 196
initial and always 209
variable capture 57, 114, 198, 223

pseudo-random bit stream generator 206

Q
quantizer model 243

R
random function 194
range limit 55
rdist_... functions 194
real

constants 153
variables 157

realtime function 176
real-valued event driven nets 164
reduction operators 173
reference directions 50
reference node 43, 49, 166
reg, see register
register 103, 156

assignment 212, 214
captured 198, 223
rules of use vs. nets 215

register-transfer level 2, 13
relational operators 174
relative tolerance (reltol) 95
relay model 67, 115

non ideal 69, 115
repeat loop 202
replicate operator 154
resetall statement 152
resistive port model 65
resistor model 35
resistor noise 66, 189

resolveto statement 125, 163
restricted for loop 84, 203
reuse 31
RLC model 63
rotational disciplines 161
rules of scope 230

S
sample and hold 186

model 77, 225
scalared 166
scale factors 43, 153
scaling 96
scope rules 230
sequential block, see procedural block
shift operators 174
signal 167

attributes, accessing 168
signal flow 75

discipline 160
port 166

simulation 1
mixed level 21, 27
plan 22, 24

simultaneous solution 199
skin effect model 88
slew filter 181

restrictions 178
small-signal analysis 65
source branch 62
specification, executable 23
Spectre ix, x

case sensitivity 245
compatibility 241–247
from AMS Designer 257
model 244
subcircuit 245
with Verilog-A 241

SPICE 8
case sensitivity 237
compatibility 236–241
from AMS Designer 257
model 238, 241, 244
multiplicity factor 241
names 239
primitive 239
subcircuit 238

spontaneous events 78, 206
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state equations 171
state variable 79
static analysis 177
stimulus, ac and noise 66, 189
stop function 191
stop, mechanical 71
string

as argument 208
constant 154

strobe function 84, 192
structural module 41–50, 121–145, 226–233

definition 45
style, modeling 96
subcircuit

Spectre 245, 257
SPICE 238, 257

supply0, supply1 wire types 165
switch (controlled) model 67, 115

non ideal 69, 115
switch branch 62, 169
synchronization

analog event in discrete process 120
discrete event in analog process 116

synthesis 1, 13
system 46
system function, see function
system-level verification 26
SystemVerilog ix, 249

T
T (tera) 154
task 221

versus function 220
temperature function 57, 177
Temperature nature 159
terminal, see port
test 30
test bench 10
thermal discipline 161
thermal noise 66, 189
thermal voltage (vt) function 177
time function 83, 175, 176
time interval measurement model 80
time unit 152, 176, 216, 218
timer event 78, 206
timescale 152
timing control 104, 216
tolerance 94

see absolute tolerance
see relative tolerance

top-down design methodology
primitive 17
principles 19
rigorous 24

top-level module 227
torque nature (Anguluar_Force) 52, 159
transient analysis 177, 242
transition filter 79, 180

restrictions 178
transmission line 245
tri, triand, trior, tri0, tri1, trireg wire

types 165
triggered

edge 67, 80, 104, 217
level 105, 218

tristate buffer model 224

U
u (micro) 154
unary reduction operators 173
undef statement 151
units 52, 159
unnamed branch 38, 167
user-defined functions 190

analog 204
digital 221

V
variable 57, 155

captured 57, 114, 198, 223
genvar 157
initialization 57
integer 156
logic 103, 156
real 157
register 103, 156
vector 105
vectors 157

VCO model 73, 118
vector 157

access 105, 157
bit select 105, 157, 166
branch 167
constants 154
instance 229
net 164
part select 157, 166
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port 84, 166
see bus
variables 105, 157

vectored 166
Velocity nature 159
verification

bottom up 28
final 29
mixed level 21, 27
plan 22, 24
system level 26

Verilog languages 2
Verilog-A 35–98

with Spectre 241
Verilog-HDL compatibility 235
VHDL-AMS 2, 257
voltage discipline 161
Voltage nature 159
voltage source model 41
voltage, see potential
VPI 234
vt function 57, 177
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W
wait 218

not allowed in analog process 196
wait statement 105
wand (wired and) wire type 165
while loop 202
white_noise stimulus 66, 189
wire 101, 165
wor (wired or) wire type 165
wreal wire type 164
write function 193

X
x logic value 101, 102, 153, 156

accessing in analog process 223, 224

Z
z filters 184

restrictions 178
z logic value 101, 102, 153, 156

accessing in analog process 223, 224


